Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)
Vì \(x=7\) \(\Rightarrow\) \(x+1=8\) \(\left(\text{*}\right)\)
Thay \(\left(\text{*}\right)\) vào \(A\), ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
Tại \(x=7\) thì khi đó, \(A=7-5=2\)
Vậy, giá trị cua biểu thức \(x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\) là \(2\)
Ta có : A = x2 + 8x + 16 - 16
=> A = (x2 + 8x + 16) - 16
=> A = (x + 4)2 - 16
Vì (x + 4)2 \(\ge0\forall x\)
Nên : A = (x + 4)2 - 16 \(\ge-16\forall x\)
Vậy Amin = -16 khi x = -4
\(A=x^2+8x\)
\(=x^2+2.x.4+16-16\)
\(=\left(x+4\right)^2-16\)
\(\Rightarrow A\ge-16\forall x\)
Dấu ''='' xảy ra khi và chỉ khi: x + 4 = 0<=> x=-4
Vậy giá trị nhỏ nhất của A là -16 khi x =- 4
b, \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\frac{15}{2}\right)\)
\(=-2\left(x^2-2.x.2+4+\frac{7}{2}\right)\)
\(=-\left(x-2\right)^2-7\)
\(\Rightarrow B\le-7\forall x\)
Dấu ''='' xảy ra khi và chỉ khi: x - 2 = 0 <=> x =2
Vậy giá trị lớn nhất của B là -7 khi x =2.
\(\left(8x+5\right)\left(8x+7\right)\left(8x+6\right)^2=72\)
Đặt \(8x+5=t\left(t\ge0\right)\)
\(t\left(t+2\right)\left(t+1\right)^2-72=0\)
\(\Leftrightarrow t\left(t+1\right)\left(t+2\right)\left(t+1\right)-72=0\)
\(\Leftrightarrow\left(t^2+t\right)\left(t^2+3t+2\right)-72=0\)
\(\Leftrightarrow t^4+3t^3+2t^2+t^3+3t^2+2t-72=0\)
\(\Leftrightarrow t^4+4t^3+5t^2+2t-72=0\)
\(\Leftrightarrow\left(t^2+2t+9\ne0\right)\left(t+4\right)\left(t-2\right)=0\Leftrightarrow t=-4;2\)
hay \(8x+5=-4\Leftrightarrow x=-\frac{9}{8}\)( trường hợp 1 )
\(8x+5=2\Leftrightarrow x=-\frac{3}{8}\)( trưởng hợp 2 )
Vậy tập nghiệm của phương trình là S = { -9/8 ; -3/8 }
\(\left(8x+5\right)\cdot\left(8x+7\right)\cdot\left(8x+6\right)^2=72\)
Đặt \(t=8x+6\)
\(Pt\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2-72=0\)
\(\Leftrightarrow\left(t^2-1\right)t^2-72=0\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\Leftrightarrow\orbr{\begin{cases}t^2=9\\t^2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}8x+6=3\\8x+6=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{8}\\x=-\frac{9}{8}\end{cases}}}\)
Vậy....
1/\(9x^2+6x-575=\left(3x\right)^2+2.3x.1+1-576=\left(3x+1\right)^2-24^2=\left(3x-23\right)\left(3x+25\right)\)
2/\(81x^4+4=81x^4+36x^2+4-36x^2=\left(9x^2+2\right)^2-\left(6x\right)^2\)
\(=\left(9x^2-6x+2\right)\left(9x^2+6x+2\right)\)
3/đặt \(t=x^2+8x+7\) thì đa thức cần phân tích:
t(t+8)+15=t2+8t+15=t2+3t+5t+15=t(t+3)+5(t+3)=(t+3)(t+5)=(x2+8x+10)(x2+8x+12)=(x2+8x+10)(x2+2x+6x+12)
=(x2+8x+10)[x(x+2)+6(x+2)]=(x2+8x+10)(x+2)(x+6)
tạm thế này đã, phải đi ăn cơm rồi :v
câu a:
\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)
đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành
\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)
có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)
- \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
- \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
Câu b:
Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)
PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)
có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)
- \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
- \(t=x\Leftrightarrow x^2=x^2+1VN\)
nhưng đây là toán 8 ,đầu năm thì đc hok hằng đẳng thức nên sẽ áp dụng theo HĐT
đề e đăng sai rồi,sửa:
\(\left(2x+1\right)\left(4x^2-2x+1\right)-\left(8x^3-1\right)\)
\(=8x^3+1-8x^3+1\)
\(=2\)
Vậy gt bt trên ko phụ thuộc vào biến.
\(x^2-8x+15\)
\(=x^2-8x+16-1\)
\(=\left(x-4\right)^2-1\)
\(=\left(x-4-1\right)\left(x-4+1\right)\)
\(x^2-8x+15=x^2-8x+16-1=\left(x-4\right)^2-1^2\)
\(=\left(x-4-1\right)\left(x-4+1\right)=\left(x-5\right)\left(x-3\right)\)