Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. ĐKXĐ: \(x\ge0\)
Đặt \(\sqrt{x}=t\ge0\)
\(\Rightarrow t^2-6t+5=0\Rightarrow\left[{}\begin{matrix}t=1\\t=5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=25\end{matrix}\right.\)
b.
Đặt \(x^2=t\ge0\)
\(\Rightarrow-t^2+5t+6=0\Rightarrow\left[{}\begin{matrix}t=-1< 0\left(loại\right)\\t=6\end{matrix}\right.\)
\(\Rightarrow x^2=6\Rightarrow x=\pm6\)
`a) x^2 + 5x + 6 = 0`
Ptr có: `\Delta = b^2 - 4ac = 5^2 - 4 . 1 . 6 = 1 > 0`
`=>` Ptr có `2` `n_o` pb
`x_1 = [ -b + \sqrt{\Delta} ] / [ 2a ] = [ -5 + \sqrt{1} ] / 2 = -2`
`x_2 = [ -b - \sqrt{\Delta} ] / [ 2a ] = [ -5 - \sqrt{1} ] / 2 = -3`
Vậy `S = { -2 ; -3 }`
_________________________________________________
`b) x^4 + 7x^2 - 8 = 0`
Đặt `x^2 = t` `(t >= 0)`
`=> t^2 + 7t - 8 = 0`
Ptr có: `\Delta = b^2 - 4ac = 7^2 - 4 . 1 . (-8) = 81 > 0`
`=>` Ptr có `2` `n_o` pb
`t_1 = [ -b + \sqrt{\Delta} ] / [ 2a ] = [ -7 + \sqrt{81} ] / 2 = 1` (t/m)
`t_2 = [ -b - \sqrt{\Delta} ] / [ 2a ] = [ -7 - \sqrt{81} ] / 2 = -8` (ko t/m)
`@ t = 1 => x^2 = 1 <=> x = +-1`
Vậy `S = { +-1 }`
a) \(x^2-\sqrt{2}x+\sqrt{5}x-\sqrt{10}=0\)
\(\Leftrightarrow x\left(x-\sqrt{2}\right)+\sqrt{5}\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{5}\end{matrix}\right.\)
a: =>(x-1)(x+1)(x-2)(x+2)=0
hay \(x\in\left\{1;-1;2;-2\right\}\)
b: \(\Leftrightarrow\sqrt{x}-6=0\)
hay x=36
c: =>(2x+1)(2x-1)=0
hay \(x\in\left\{-\dfrac{1}{2};\dfrac{1}{2}\right\}\)
a: =>(x^2-1)(x^2-4)=0
=>(x-1)(x+1)(x-2)(x+2)=0
=>\(x\in\left\{1;-1;2;-2\right\}\)
b: =>2x^4-4x^2+x^2-2=0
=>(x^2-2)(2x^2+1)=0
=>x^2-2=0
=>\(x=\pm\sqrt{2}\)
c: =>(căn x-6)(căn x+1)=0
=>căn x-6=0
=>x=36
\(-x^2-5x-6=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow x^2+3x+2x+6=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{-3;-2\right\}\)
Lớp 9 thì dùng công thức nghiệm chứ Phạm Thành Đông :)
-x2 - 5x - 6 = 0
Δ = b2 - 4ac = (-5)2 - 4.(-1).(-6) = 25 - 24 = 1
Δ > 0, áp dụng công thức nghiệm thu được x1 = 3 ; x2 = 2
Vậy phương trình có hai nghiệm x1 = 3 ; x2 = 2