Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 -2xy +y2 +3x -3y -10
=x2-xy-xy+y2-2x+5x-5y+2y-10
=y2-xy+2y-xy+x2-2x-5y+5x-10
=y(y-x+2)-x(y-x+2)-5(y-x+2)
=(y-x-5)(y-x+2)
Phân tích thành nhân tử à?
\(x^2-2xy+y^2+3x-3y-10\\ \\ =\left(x^2-2xy+y^2\right)+\left(3x-3y\right)-10\\ =\left(x-y\right)^2+3\left(x-y\right)-10\\ =\left(x-y+3\right)\left(x-y\right)-10\left(1\right)\)
Đặt \(x-y=a\) \(\left(\text{*}\right)\)
Thay \(\left(\text{*}\right)\) vào \(\left(1\right)\)
\(\text{Ta được: }\left(1\right)=a\left(a+3\right)-10\\ \\ =a^2+3a-10\\ \\ =a^2+5a-2a-10\\ =\left(a^2+5a\right)-\left(2a+10\right)\\ \\ =a\left(a+5\right)-2\left(a+5\right)\\ \\ =\left(a-2\right)\left(a+5\right)\text{ }\text{ }\text{ }\left(2\right)\)
Thay \(\left(\text{*}\right)\) vào \(\left(2\right)\)
\(\text{Ta lại được: }\left(2\right)=\left(x-y-2\right)\left(x-y+5\right)\)
\(x^2-2xy+y^2+3x-3y-10=\left(x^2-2xy+y^2\right)+3\left(x-y\right)-10=\left(x-y\right)^2+3\left(x-y\right)-10=\left(x-y\right)^2-2\left(x-y\right)+5\left(x-y\right)-10=\left(x-y\right)\left(x-y-2\right)+5\left(x-y-2\right)=\left(x-y+5\right)\left(x-y-2\right)\)
= ( x - y)^2 - 3 ( x - y) . -10
= ( x - y)^2 - 2.(x-y) . 3/2 +9/4 - 49/4
= ( x - y - 3/2) ^2 - (7/2)^2
= ( x- y - 3/2 - 7/2 )( x - y -3/2 + 7/2 )
=( x - y - 5 )( x - y + 2)
\(x^2-2xy+y^2+3x-3y-10\)
\(=\left(y^2-xy-5y\right)-\left(xy-x^2-5x\right)+\left(2y-2x-10\right)\)
\(=y\left(y-x-5\right)-x\left(y-x-5\right)+2\left(y-x-5\right)\)
\(=\left(y-x+2\right)\left(y-x-5\right)\)
= ( x - y)^2 - 3 ( x - y) . -10
= ( x - y)^2 - 2.(x-y) . 3/2 +9/4 - 49/4
= ( x - y - 3/2) ^2 - (7/2)^2
= ( x- y - 3/2 - 7/2 )( x - y -3/2 + 7/2 )
=( x - y - 5 )( x - y + 2)
LÀm thế này đúng không cho nhận xét
e) \(\left(x-y\right)^2+4\left(x-y\right)-12\)
\(=\left(x-y\right)\left[\left(x-y\right)+4\right]-12\)
\(=\left(x-y\right)\left(x-y+4\right)-12\)
f) \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x^2-2xy+y^2\right)+\left(3x-3y\right)-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y\right)\left[\left(x-y\right)+3\right]-10\)
\(=\left(x-y\right)\left(x-y+3\right)-10\)
g) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left[\left(x^2+4x+8\right)+3x\right]+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+3x\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+7x+8\right)+2x^2\)
1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)
Ta đặt: \(x^2+8x+7=n\)
\(=n.\left(n+8\right)+15\)
\(=n^2+8n+15\)
\(=n^2+3n+5n+15\)
\(=\left(n^2+3n\right)+\left(5n+15\right)\)
\(=n.\left(n+3\right)+5.\left(n+3\right)\)
\(=\left(n+3\right).\left(n+5\right)\)
\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)
\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)
2) \(x^2-2xy+3x-3y-10+y^2\)
\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)
Ta đặt: \(x-y=n\)
\(=n^2+3n-10\)
\(=n^2-2n+5n-10\)
\(=\left(n^2-2n\right)+\left(5n-10\right)\)
\(=n.\left(n-2\right)+5.\left(n-2\right)\)
\(=\left(n-2\right).\left(n+5\right)\)
\(=\left(x-y-2\right).\left(x-y+5\right)\)