Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
\(x^2-2xy+y^2+3x-3y-10=\left(x^2-2xy+y^2\right)+3\left(x-y\right)-10=\left(x-y\right)^2+3\left(x-y\right)-10=\left(x-y\right)^2-2\left(x-y\right)+5\left(x-y\right)-10=\left(x-y\right)\left(x-y-2\right)+5\left(x-y-2\right)=\left(x-y+5\right)\left(x-y-2\right)\)
= ( x - y)^2 - 3 ( x - y) . -10
= ( x - y)^2 - 2.(x-y) . 3/2 +9/4 - 49/4
= ( x - y - 3/2) ^2 - (7/2)^2
= ( x- y - 3/2 - 7/2 )( x - y -3/2 + 7/2 )
=( x - y - 5 )( x - y + 2)
1) x(x+3)(x+1)(x+2)+1= (x^2 +3x)(x^2+3x+2)+1
Đặt x^2+3x=a ta có:
a(a+2)+1= a^2 +2a +1= (a+1)^2
Trở về ẩn x có
x(x+3)(x+1)(x+2)+1= (x^2 +3x)^2=x^2(x+3)^2
2) Đặt x^2 + x=a, ta có
a^2 +3a +2= (a^2+a) + (a+2)=a(a+2) +(a+2)=(a+1)(a+2)
Trở về ẩn x có
BT=( x^2 + x+1)(x^2 + x+2)
3) BT= (x-y)^2 +3(x-y) -10
đặt x-y=a ta có
a^2+3a -10= (a^2-2a)+(5a-10)=a(a-2)+5(a-2)=(a+5)(a-2)
trở về ẩn x,y có
BT= (x-y +5)(x-y-2)
\(x^2-2xy+y^2+3x-3y-10\)
\(=\left(y^2-xy-5y\right)-\left(xy-x^2-5x\right)+\left(2y-2x-10\right)\)
\(=y\left(y-x-5\right)-x\left(y-x-5\right)+2\left(y-x-5\right)\)
\(=\left(y-x+2\right)\left(y-x-5\right)\)
= ( x - y)^2 - 3 ( x - y) . -10
= ( x - y)^2 - 2.(x-y) . 3/2 +9/4 - 49/4
= ( x - y - 3/2) ^2 - (7/2)^2
= ( x- y - 3/2 - 7/2 )( x - y -3/2 + 7/2 )
=( x - y - 5 )( x - y + 2)
LÀm thế này đúng không cho nhận xét
x6+3x4y2-8x3y3+3x2y4+y6= x6+3x4y2+3x2y4+y6-8x3y3=(x2+y2)3-(2xy)3
= (x2+y2-2xy)[(x2+y2)2+2xy(x2+y2)+(2xy)2]= (x-y)2(x4+6x2y2+y4+2x3y+2xy3)
(x2+y2-5)2-4x2y2-16xy-16=(x2+y2-5)2-(4x2y2+16xy+16)=(x2+y2-5)2-(2xy+4)2
=(x2+y2-5+2xy+4)(x2+y2-5-2xy-4)=(x2+2xy+y2-1)(x2-2xy+y2-9)=[(x+y)2-1][(x-y)2-32]=(x+y-1)(x+y+1)(x-y-3)(x-y+3)
x4+324=x4+36x2+324-36x2=(x2+18)2-(6x)2=(x2+18-6x)(x2+18+6x)
a) Đăt \(x^2+x=t\) khi đó bt trở thành:
\(t^2-2t-15=t^2+3t-5t-15=t\left(t+3\right)-5\left(t+3\right)\\ =\left(t+3\right)\left(1-5\right)=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
3x^2 +3y^2 -6xy -12
=3(x^2 - 2xy +y^2 - 2^2 )
=3 (x-y)^2 - 2^2
=3(x-y-2)(x-y+2)
3(x+y) -(x^2+2xy+y^2)
=3(x+y) -(x+y)^2
(x+y)(3-x-y)
1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)
Ta đặt: \(x^2+8x+7=n\)
\(=n.\left(n+8\right)+15\)
\(=n^2+8n+15\)
\(=n^2+3n+5n+15\)
\(=\left(n^2+3n\right)+\left(5n+15\right)\)
\(=n.\left(n+3\right)+5.\left(n+3\right)\)
\(=\left(n+3\right).\left(n+5\right)\)
\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)
\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)
2) \(x^2-2xy+3x-3y-10+y^2\)
\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)
Ta đặt: \(x-y=n\)
\(=n^2+3n-10\)
\(=n^2-2n+5n-10\)
\(=\left(n^2-2n\right)+\left(5n-10\right)\)
\(=n.\left(n-2\right)+5.\left(n-2\right)\)
\(=\left(n-2\right).\left(n+5\right)\)
\(=\left(x-y-2\right).\left(x-y+5\right)\)