Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2xy+y^2+3x-3y-10=\left(x^2-2xy+y^2\right)+3\left(x-y\right)-10=\left(x-y\right)^2+3\left(x-y\right)-10=\left(x-y\right)^2-2\left(x-y\right)+5\left(x-y\right)-10=\left(x-y\right)\left(x-y-2\right)+5\left(x-y-2\right)=\left(x-y+5\right)\left(x-y-2\right)\)
= ( x - y)^2 - 3 ( x - y) . -10
= ( x - y)^2 - 2.(x-y) . 3/2 +9/4 - 49/4
= ( x - y - 3/2) ^2 - (7/2)^2
= ( x- y - 3/2 - 7/2 )( x - y -3/2 + 7/2 )
=( x - y - 5 )( x - y + 2)
= ( x - y)^2 - 3 ( x - y) . -10
= ( x - y)^2 - 2.(x-y) . 3/2 +9/4 - 49/4
= ( x - y - 3/2) ^2 - (7/2)^2
= ( x- y - 3/2 - 7/2 )( x - y -3/2 + 7/2 )
=( x - y - 5 )( x - y + 2)
LÀm thế này đúng không cho nhận xét
\(x^2-2xy+y^2+3x-3y-10\)
\(=\left(y^2-xy-5y\right)-\left(xy-x^2-5x\right)+\left(2y-2x-10\right)\)
\(=y\left(y-x-5\right)-x\left(y-x-5\right)+2\left(y-x-5\right)\)
\(=\left(y-x+2\right)\left(y-x-5\right)\)
1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)
\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)
Ta đặt: \(x^2+8x+7=n\)
\(=n.\left(n+8\right)+15\)
\(=n^2+8n+15\)
\(=n^2+3n+5n+15\)
\(=\left(n^2+3n\right)+\left(5n+15\right)\)
\(=n.\left(n+3\right)+5.\left(n+3\right)\)
\(=\left(n+3\right).\left(n+5\right)\)
\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)
\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)
\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)
\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)
2) \(x^2-2xy+3x-3y-10+y^2\)
\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)
Ta đặt: \(x-y=n\)
\(=n^2+3n-10\)
\(=n^2-2n+5n-10\)
\(=\left(n^2-2n\right)+\left(5n-10\right)\)
\(=n.\left(n-2\right)+5.\left(n-2\right)\)
\(=\left(n-2\right).\left(n+5\right)\)
\(=\left(x-y-2\right).\left(x-y+5\right)\)
e) \(\left(x-y\right)^2+4\left(x-y\right)-12\)
\(=\left(x-y\right)\left[\left(x-y\right)+4\right]-12\)
\(=\left(x-y\right)\left(x-y+4\right)-12\)
f) \(x^2-2xy+y^2+3x-3y-10\)
\(=\left(x^2-2xy+y^2\right)+\left(3x-3y\right)-10\)
\(=\left(x-y\right)^2+3\left(x-y\right)-10\)
\(=\left(x-y\right)\left[\left(x-y\right)+3\right]-10\)
\(=\left(x-y\right)\left(x-y+3\right)-10\)
g) \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left[\left(x^2+4x+8\right)+3x\right]+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+3x\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+7x+8\right)+2x^2\)
1) x(x+3)(x+1)(x+2)+1= (x^2 +3x)(x^2+3x+2)+1
Đặt x^2+3x=a ta có:
a(a+2)+1= a^2 +2a +1= (a+1)^2
Trở về ẩn x có
x(x+3)(x+1)(x+2)+1= (x^2 +3x)^2=x^2(x+3)^2
2) Đặt x^2 + x=a, ta có
a^2 +3a +2= (a^2+a) + (a+2)=a(a+2) +(a+2)=(a+1)(a+2)
Trở về ẩn x có
BT=( x^2 + x+1)(x^2 + x+2)
3) BT= (x-y)^2 +3(x-y) -10
đặt x-y=a ta có
a^2+3a -10= (a^2-2a)+(5a-10)=a(a-2)+5(a-2)=(a+5)(a-2)
trở về ẩn x,y có
BT= (x-y +5)(x-y-2)
1/ \(3x^2+6x+3-3y^2=3x^2+3x+3x+3-3y^2\)
\(=3\left(x^2+2x+1-y^2\right)\)
\(=3\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=3\left[\left(x+1\right)^2-y^2\right]\)
\(=3\left(x+1-y\right)\left(x+1+y\right)\)
2/ \(25-x^2-y^2+2xy=5^2-\left(x^2+y^2-2xy\right)\)
\(=5^2-\left(x-y\right)^2\)
\(=\left[5-\left(x-y\right)\right]\left(5+x+y\right)\)
\(=\left(5-x+y\right)\left(5+x+y\right)\)
3/ \(3x-3y-x^2+2xy-y^2=3\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left[3-\left(x-y\right)\right]\)
\(=\left(x-y\right)\left(3-x+y\right)\)
3x^2 +3y^2 -6xy -12
=3(x^2 - 2xy +y^2 - 2^2 )
=3 (x-y)^2 - 2^2
=3(x-y-2)(x-y+2)
3(x+y) -(x^2+2xy+y^2)
=3(x+y) -(x+y)^2
(x+y)(3-x-y)
Phân tích thành nhân tử à?
\(x^2-2xy+y^2+3x-3y-10\\ \\ =\left(x^2-2xy+y^2\right)+\left(3x-3y\right)-10\\ =\left(x-y\right)^2+3\left(x-y\right)-10\\ =\left(x-y+3\right)\left(x-y\right)-10\left(1\right)\)
Đặt \(x-y=a\) \(\left(\text{*}\right)\)
Thay \(\left(\text{*}\right)\) vào \(\left(1\right)\)
\(\text{Ta được: }\left(1\right)=a\left(a+3\right)-10\\ \\ =a^2+3a-10\\ \\ =a^2+5a-2a-10\\ =\left(a^2+5a\right)-\left(2a+10\right)\\ \\ =a\left(a+5\right)-2\left(a+5\right)\\ \\ =\left(a-2\right)\left(a+5\right)\text{ }\text{ }\text{ }\left(2\right)\)
Thay \(\left(\text{*}\right)\) vào \(\left(2\right)\)
\(\text{Ta lại được: }\left(2\right)=\left(x-y-2\right)\left(x-y+5\right)\)
= (x-y)2 +3(x-y)-10
=(x-y).(x-y+3)-10