Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có:
Pt <=> \(\left(-8+x^2\right)^5=1\)
\(\Rightarrow-8+x^2=1\)
\(\Leftrightarrow x^2=9\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
dời trả lời nhanh z
định giúp bạn mink kiếm điểm ai ngờ...:))
a,
\(5^{x+4}-3.5^{x+3}=2.5^{11}\)
\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)
\(\Rightarrow5^{x+3}2=2.5^{11}\)
\(\Rightarrow5^{x+3}=5^{11}\)
\(\Rightarrow x+3=11\)
\(\Rightarrow x=8\)
b, (Check lai xem de sai o dau khong nhe)
\(3.5^{x+2}+4.5^{x+3}=19.5^{10}\)
Dat 5x ra ben ngoai
\(\Rightarrow5^x.5^23+5^x:5^{-3}.4\)
\(\Rightarrow5^x\left(5^2.3+5^{-3}.4\right)\)
\(\Rightarrow5^x\left(5^{-3}.5^5.3+5^{-3}.4\right)\)
\(\Rightarrow5^x[5^{-3}\left(5^53+4\right)\)
\(\Rightarrow5^x[5^{-3}\left(3125.3+4\right)\)
\(\Rightarrow5^x\left(5^{-3}\right).9379\)
=> Khong tim duoc gia tri cua x \(\Rightarrow x\in\varnothing\)
a) \(\left|4-x\right|+2x=3\)
<=> \(\left|4-x\right|=3-2x\)
<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)
Vậy x = -1
b) \(\left|x-7\right|+2x+5=6\)
<=> \(\left|x-7\right|=1-2x\)
<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)
Vậy x = -6
c) \(3x-\left|2x+1\right|=2\)
<=> \(\left|2x+1\right|=3x-2\)
<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)
<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)
Vậy x = 3
d) \(\left|x+2\right|-x=2\)
<=> \(\left|x+2\right|=x+2\)
<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)
<=> 0x = 0 (luôn đúng) và x = -2 (ktm)
Vậy x \(\ge\)-2
e) \(\left|x-3\right|=21\)
<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)
<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)
Vậy x = 24 hoặc x = -18
f) \(\left|2x+3\right|-\left|x-3\right|=0\)
<=> \(\left|2x+3\right|=\left|x-3\right|\)
<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)
Vậy x thuộc {-6; 0}
g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)
\(\left|x+\frac{2}{8}\right|\ge0\forall x\)
\(\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)
=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)
Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)
<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)
Vậy x = 1
h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)
<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)
Lập bảng xét dấu:
x -3/2 2
x - 2 2 - x | 2 - x 0 x - 2
2x + 3 -2x - 3 0 2x + 3 | 2x + 3
Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2
<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)
Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2
<=> 4x = 1 <=> x = 1/4 ((tm)
Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2
<=> 2x = -3 <=> x = -3/2 (ktm)
Vậy x = 1/4
i) |2x - 3| - x = |2 - x|
<=> |2x - 3| - |2 - x| = x (*)
Lập bảng xét dấu
x 3/2 2
2x - 3 3 - 2x 0 2x - 3 | 2x - 3
2 - x 2 - x | 2 - x 0 x - 2
Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x = x
<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x
<=> 2x = 5 <=> x = 5/2 (ktm)
Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x
<=> 0x = -5 (vô lí)
Vậy x = 1/2
k) 2|x - 3| - |4x - 1| = 0
<=> 2|x - 3| = |4x - 1|
<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...
a) \(\frac{x}{x+1}=\frac{1}{2}\)
=> 2x = x + 1
=> 2x - x = 1
=> x = 1
b) \(\frac{x}{2}=\frac{x}{3}\)
=> 3x = 2x
=> 3x - 2x = 0
=> x = 0
c) \(\frac{x+1}{2}=\frac{x+1}{2017}\)
=> \(2017\left(x+1\right)=2\left(x+1\right)\)
=> 2017x + 2017 = 2x + 2
=> 2017x - 2x = 2 - 2017
=> 2015x = -2015
=> x = -2015 : 2015
=> x = -1
i) \(\frac{3}{x}=\frac{x}{2017}\)
=> x2 = 2017.3
=> x2 = 6051
=> \(\orbr{\begin{cases}x=\sqrt{6051}\\x=-\sqrt{6051}\end{cases}}\)
còn lại tự lm
\(a,\frac{x}{x+1}=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}.\left(x+1\right)\)
\(\Rightarrow x=\frac{1}{2}x+\frac{1}{2}\)
\(\Rightarrow x-\frac{1}{2}x=\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}x=\frac{1}{2}\)
\(\Rightarrow x=1\)
\(b,\frac{x}{2}=\frac{x}{3}\)
\(\Rightarrow x=\frac{x}{3}.2\)
\(\Rightarrow x=\frac{2x}{3}\)
\(\Rightarrow3x=2x\)
\(\Rightarrow x=0\)
\(c,\frac{x+1}{2}=\frac{x+1}{2017}\)
\(\Rightarrow x+1=\frac{x+1}{2017}.2\)
\(\Rightarrow x+1=\frac{2x+2}{2017}\)
\(\Rightarrow2017x+2017=2x+2\)
\(\Rightarrow2017x-2x=2-2017\)
\(\Rightarrow2015x=-2015\)
\(\Rightarrow x=-1\)
\(i,\frac{3}{x}=\frac{x}{2017}\)
\(\Rightarrow x=3:\frac{x}{2017}\)
\(\Rightarrow x=\frac{6051}{x}\)
\(\Rightarrow x^2=6051\)
\(\Rightarrow x=\sqrt{6051}\)
\(o,\frac{x}{3}=\frac{x+1}{2}\)
\(\Rightarrow x=\frac{x+1}{2}.3\)
\(\Rightarrow x=\frac{3x+3}{2}\)
\(\Rightarrow2x=3x+3\)
\(\Rightarrow-x=3\)
\(\Rightarrow x=-3\)
\(m,\frac{x+1}{2}=\frac{x+2}{3}\)
\(\Rightarrow x+1=\frac{x+2}{3}.2\)
\(\Rightarrow x+1=\frac{2x+4}{3}\)
\(\Rightarrow3x+3=2x+4\)
\(\Rightarrow x=1\)
\(p,\frac{x+1}{2}=x\)
\(\Rightarrow2x=x+1\)
\(\Rightarrow x=1\)
\(m,\frac{2}{x}=\frac{x}{8}\)
\(\Rightarrow x=2:\frac{x}{8}\)
\(\Rightarrow x=\frac{16}{x}\)
\(\Rightarrow x^2=16\)
\(\Rightarrow x=4\)
\(Q,\frac{x^2}{2}=\frac{8}{x^2}\)
\(\Rightarrow x^2=\frac{8}{x^2}.2\)
\(\Rightarrow x^2=\frac{16}{x^2}\)
\(\Rightarrow x^4=16\)
\(\Rightarrow x=2\)
\(r,\frac{x^3}{2}=\frac{32}{x}\)
\(\Rightarrow x^3=\frac{32}{x}.2\)
\(\Rightarrow x^3=\frac{64}{x}\)
\(\Rightarrow x^4=64\)
\(\Rightarrow x=\sqrt[4]{64}\)
a) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)
\(\Rightarrow x-1+x+1=19+21\)
\(=2x=40\)
\(\Rightarrow x=20\)
b) \(4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)
\(\Rightarrow x-1+x+2=6+9\)
\(\Rightarrow2x+1=15\)
\(\Rightarrow2x=14\)
\(\Rightarrow x=7\)
Ta có :
\(x.x=-8.2\)
\(x^2=-16\)
\(x^2=4^2\)hoặc \(-4^2\)
\(x=4\)hoặc \(x=-4\)