K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2023

a) (x+1)/2=(x-1)/3

=> 3(x+1)=2(x-1)

<=>3x+3=2x-2

<=>x=-5

b) (x+2)/2=8/(x+2)

=>(x+2)^2=16

=> x+2=4 hoặc x+2=-4

=> x=2 hoặc x=-6

Vậy x\(\in\){2;-6}

7 tháng 12 2023

\(\dfrac{x+1}{2}\) = \(\dfrac{x-1}{3}\)

3.(\(x\) + 1) = (\(x\) - 1).\(2\) 

3\(x\) + 3    = 2\(x\) - 2

3\(x\) - 2\(x\)  = -3 - 2

      \(x\)     = - 5

\(\dfrac{x+2}{2}\) = \(\dfrac{8}{x+2}\)

(\(x\) + 2)2 = 8.2

(\(x\) + 2)2 = 16

\(\left[{}\begin{matrix}x+2=-4\\x+2=4\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-6\\x=2\end{matrix}\right.\)

 

12 tháng 7 2019

a) \(\frac{x}{x+1}=\frac{1}{2}\)

=> 2x = x + 1

=> 2x - x = 1

=> x = 1

b) \(\frac{x}{2}=\frac{x}{3}\)

=> 3x = 2x

=> 3x - 2x = 0

=> x = 0

c) \(\frac{x+1}{2}=\frac{x+1}{2017}\)

=> \(2017\left(x+1\right)=2\left(x+1\right)\)

=> 2017x + 2017 = 2x + 2

=> 2017x - 2x = 2 - 2017

=> 2015x = -2015

=> x = -2015 : 2015

=> x = -1

i) \(\frac{3}{x}=\frac{x}{2017}\)

=> x2 = 2017.3

=> x2 = 6051

=> \(\orbr{\begin{cases}x=\sqrt{6051}\\x=-\sqrt{6051}\end{cases}}\)

còn lại tự lm

\(a,\frac{x}{x+1}=\frac{1}{2}\)

\(\Rightarrow x=\frac{1}{2}.\left(x+1\right)\)

\(\Rightarrow x=\frac{1}{2}x+\frac{1}{2}\)

\(\Rightarrow x-\frac{1}{2}x=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}x=\frac{1}{2}\)

\(\Rightarrow x=1\)

\(b,\frac{x}{2}=\frac{x}{3}\)

\(\Rightarrow x=\frac{x}{3}.2\)

\(\Rightarrow x=\frac{2x}{3}\)

\(\Rightarrow3x=2x\)

\(\Rightarrow x=0\)

\(c,\frac{x+1}{2}=\frac{x+1}{2017}\)

\(\Rightarrow x+1=\frac{x+1}{2017}.2\)

\(\Rightarrow x+1=\frac{2x+2}{2017}\)

\(\Rightarrow2017x+2017=2x+2\)

\(\Rightarrow2017x-2x=2-2017\)

\(\Rightarrow2015x=-2015\)

\(\Rightarrow x=-1\)

\(i,\frac{3}{x}=\frac{x}{2017}\)

\(\Rightarrow x=3:\frac{x}{2017}\)

\(\Rightarrow x=\frac{6051}{x}\)

\(\Rightarrow x^2=6051\)

\(\Rightarrow x=\sqrt{6051}\)

\(o,\frac{x}{3}=\frac{x+1}{2}\)

\(\Rightarrow x=\frac{x+1}{2}.3\)

\(\Rightarrow x=\frac{3x+3}{2}\)

\(\Rightarrow2x=3x+3\)

\(\Rightarrow-x=3\)

\(\Rightarrow x=-3\)

\(m,\frac{x+1}{2}=\frac{x+2}{3}\)

\(\Rightarrow x+1=\frac{x+2}{3}.2\)

\(\Rightarrow x+1=\frac{2x+4}{3}\)

\(\Rightarrow3x+3=2x+4\)

\(\Rightarrow x=1\)

\(p,\frac{x+1}{2}=x\)

\(\Rightarrow2x=x+1\)

\(\Rightarrow x=1\)

\(m,\frac{2}{x}=\frac{x}{8}\)

\(\Rightarrow x=2:\frac{x}{8}\)

\(\Rightarrow x=\frac{16}{x}\)

\(\Rightarrow x^2=16\)

\(\Rightarrow x=4\)

\(Q,\frac{x^2}{2}=\frac{8}{x^2}\)

\(\Rightarrow x^2=\frac{8}{x^2}.2\)

\(\Rightarrow x^2=\frac{16}{x^2}\)

\(\Rightarrow x^4=16\)

\(\Rightarrow x=2\)

\(r,\frac{x^3}{2}=\frac{32}{x}\)

\(\Rightarrow x^3=\frac{32}{x}.2\)

\(\Rightarrow x^3=\frac{64}{x}\)

\(\Rightarrow x^4=64\)

\(\Rightarrow x=\sqrt[4]{64}\)

9 tháng 10 2016

dùng fx gõ cho hẳn hoi

5 tháng 7 2021

a) \(\left|4-x\right|+2x=3\)

<=> \(\left|4-x\right|=3-2x\)

<=> \(\orbr{\begin{cases}4-x=3-2x\left(x\le4\right)\\x-4=3-2x\left(x>4\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\left(tm\right)\\3x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1\\x=\frac{7}{3}\left(ktm\right)\end{cases}}\)

Vậy x = -1

b) \(\left|x-7\right|+2x+5=6\)

<=> \(\left|x-7\right|=1-2x\)

<=> \(\orbr{\begin{cases}x-7=1-2x\left(đk:x\ge7\right)\\x-7=2x-1\left(đk:x< 7\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=8\\x=-6\left(tm\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{8}{3}\left(ktm\right)\\x=-6\left(tm\right)\end{cases}}\)

Vậy x = -6

c) \(3x-\left|2x+1\right|=2\)

<=> \(\left|2x+1\right|=3x-2\)

<=> \(\orbr{\begin{cases}2x+1=3x-2\left(đk:x\ge-\frac{1}{2}\right)\\2x+1=2-3x\left(đk:x< -\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\left(tm\right)\\5x=1\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=\frac{1}{5}\left(ktm\right)\end{cases}}\)

Vậy x = 3

d) \(\left|x+2\right|-x=2\)

<=> \(\left|x+2\right|=x+2\)

<=> \(\orbr{\begin{cases}x+2=x+2\left(đk:x\ge-2\right)\\x+2=-x-2\left(x< -2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}0x=0\\2x=-4\end{cases}}\)

<=> 0x = 0 (luôn đúng) và x = -2 (ktm)

Vậy x \(\ge\)-2

5 tháng 7 2021

e) \(\left|x-3\right|=21\)

<=> \(\orbr{\begin{cases}x-3=21\\3-x=21\end{cases}}\)

<=> \(\orbr{\begin{cases}x=24\\x=-18\end{cases}}\)

Vậy x = 24 hoặc x = -18

f) \(\left|2x+3\right|-\left|x-3\right|=0\)

<=> \(\left|2x+3\right|=\left|x-3\right|\)

<=> \(\orbr{\begin{cases}2x+3=x-3\\2x+3=3-x\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\3x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-6\\x=0\end{cases}}\)

Vậy x thuộc {-6; 0}

g) Ta có: \(\left|x+\frac{1}{8}\right|\ge0\forall x\)

          \(\left|x+\frac{2}{8}\right|\ge0\forall x\)

    \(\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VT = \(\left|x+\frac{1}{8}\right|+\left|x+\frac{2}{8}\right|+\left|x+\frac{5}{8}\right|\ge0\forall x\)

=> VP \(\ge0\) => \(4x\ge0\) => \(x\ge0\)

Do đó: \(x+\frac{1}{8}+x+\frac{2}{8}+x+\frac{5}{8}=4x\)

<=> \(3x+1=4x\) <=> \(x=1\left(tm\right)\)

Vậy x = 1

h) \(\left|x-2\right|-\left|2x+3\right|-x=-2\)

<=> \(\left|x-2\right|-\left|2x+3\right|=x-2\)(*)

Lập bảng xét dấu: 

x                     -3/2              2

x - 2        2 - x    |        2 - x    0        x - 2

2x + 3  -2x - 3   0      2x + 3  |          2x + 3

Xét x < -3/2 => pt (*) trở thành: 2 - x + 2x + 3 = x - 2

<=> x + 5 = x - 2 <=> 0x = -7 (vô lí)

Xét -3/2 \(\le\) x < 2 => pt (*) trở thành: 2 - x - 2x - 3 = x - 2

<=> 4x = 1 <=> x = 1/4 ((tm)

Xét x \(\ge\) 2 => pt (*) trở thành x - 2 - 2x - 3 = x - 2

<=> 2x = -3 <=>  x = -3/2 (ktm)

Vậy x = 1/4

i) |2x - 3| - x = |2 - x|

<=> |2x - 3| - |2 - x| = x (*)

Lập bảng xét dấu

x                    3/2               2

2x - 3   3 - 2x   0     2x - 3   |  2x - 3

2 - x     2 - x     |       2 - x    0   x - 2

Xét x < 3/2 => pt (*) trở thành: 3 - 2x - 2 + x =  x

<=> 2x = 1 <=> x = 1//2 ((tm)
Xét \(\frac{3}{2}\le x< 2\)=> pt (*) trở thành: 2x - 3 - 2 + x = x

<=> 2x = 5 <=> x = 5/2 (ktm)

Xét x \(\ge\)2 ==> pt (*) trở thành: 2x - 3 - x + 2 = x

<=> 0x = -5 (vô lí)

Vậy x = 1/2

k) 2|x - 3| - |4x - 1| = 0

<=> 2|x - 3| = |4x - 1|

<=> \(\orbr{\begin{cases}2\left(x-3\right)=4x-1\\2\left(x-3\right)=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x-6=4x-1\\2x-6=1-4x\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-5\\6x=7\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{5}{2}\\x=\frac{7}{6}\end{cases}}\) Vậy ...

28 tháng 8 2021

a,

\(5^{x+4}-3.5^{x+3}=2.5^{11}\)

\(\Rightarrow5^{x+3}\left(5-3\right)=2.5^{11}\)

\(\Rightarrow5^{x+3}2=2.5^{11}\)

\(\Rightarrow5^{x+3}=5^{11}\)

\(\Rightarrow x+3=11\)

\(\Rightarrow x=8\)

28 tháng 8 2021

b, (Check lai xem de sai o dau khong nhe)

\(3.5^{x+2}+4.5^{x+3}=19.5^{10}\)

Dat 5x ra ben ngoai

\(\Rightarrow5^x.5^23+5^x:5^{-3}.4\)

\(\Rightarrow5^x\left(5^2.3+5^{-3}.4\right)\)

\(\Rightarrow5^x\left(5^{-3}.5^5.3+5^{-3}.4\right)\)

\(\Rightarrow5^x[5^{-3}\left(5^53+4\right)\)

\(\Rightarrow5^x[5^{-3}\left(3125.3+4\right)\)

\(\Rightarrow5^x\left(5^{-3}\right).9379\)

=> Khong tim duoc gia tri cua x \(\Rightarrow x\in\varnothing\)

3 tháng 8 2021

4,  Q = |x+\(\frac{1}{5}\) | -x +\(\frac{4}{7}\)

 xét x \(\ge\) \(-\frac{1}{5}\)

 Ta Có  Q = |x+\(\frac{1}{5}\) | -x + \(\frac{4}{7}\)  = x+\(\frac{1}{5}\) - x +\(\frac{4}{7}\)\(\frac{27}{35}\)   (1)

xét x \(< -\frac{1}{5}\)

Ta có Q = | x +\(\frac{1}{5}\) | - x + \(\frac{4}{7}\) = -x - \(\frac{1}{5}\) - x + \(\frac{4}{7}\) = -2x  + \(\frac{13}{35}\)

với x \(< -\frac{1}{5}\) 

=> -2x \(>\) \(\frac{2}{5}\) 

=> -2x + \(\frac{13}{35}\) \(>\frac{27}{35}\) (2)

Từ (1) và (2) => MinQ = \(\frac{27}{35}\) khi \(x\ge-\frac{1}{5}\)

5 ,  D = |x| + |8-x| 

D = |x| + |8-x| \(\ge\) |x+8-x|  = |8| = 8

Dấu ''='' xảy ra khi   x(8-x) \(\ge\) 0  <=> 0\(\le\)x\(\le\) 8 

Vậy MinD = 8 khi \(0\le x\le8\) 

6,L=  |x - 2012| + |2011 - x| 

L = |x-2012| + |2011-x| \(\ge\) | x-2012 + 2011 - x |  = |-1| = 1 

Dấu ''= '' xảy ra khi ( x-2012)(2011-x) \(\ge\) 0  

3 tháng 8 2021

làm nốt câu 6 nãy ấn nhầm 

<=> 2011\(\le\) x \(\le\) 2012

Vậy MinL = 1 khi \(2011\le x\le2012\) 

7 , E = | x- \(\frac{2006}{2007}\) | + |x-1| 

Ta có :

E = |x-\(\frac{2006}{2007}\) | + |1-x| 

E = | x - \(\frac{2006}{2007}\) | + |1-x| \(\ge\) | x - \(\frac{2006}{2007}\) + 1 - x |  = \(\frac{1}{2007}\) 

Dấu ''='' xảy ra khi (x- \(\frac{2006}{2007}\) ) ( 1-x ) \(\ge0\) <=>  \(\frac{2006}{2007}\le x\le1\) 

Vậy MinE = \(\frac{1}{2007}\) khi \(\frac{2006}{2007}\le x\le1\) 

8 ,F = | x -\(\frac{1}{4}\) | + | \(x-\frac{3}{4}\) | 

Ta có :

F  = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\)   - x | 

F  = | x - \(\frac{1}{4}\) | + | \(\frac{3}{4}\) -x | \(\ge\) | x - \(\frac{1}{4}\) + \(\frac{3}{4}\) -x  |  = \(\frac{1}{2}\) 

Dấu ''='' xảy ra khi ( x-\(\frac{1}{4}\) ) ( \(\frac{3}{4}-x\) ) \(\ge\) 0    <=>  \(\frac{1}{4}\le x\le\frac{3}{4}\) 

Vậy MinF = \(\frac{1}{2}\) khi \(\frac{1}{4}\le x\le\frac{3}{4}\)

12 tháng 9 2017

1)

Ta có: \(\left(x-\frac{1}{2}\right)^3=8\Rightarrow\left(x-\frac{1}{2}\right)^3=2^3\)

\(\Rightarrow x-\frac{1}{2}=2\Rightarrow x=2+\frac{1}{2}=\frac{5}{2}\)

12 tháng 9 2017

\(\left(x-1\right)^3=\frac{8}{27}\Rightarrow\left(x-1\right)^3=\left(\frac{2}{3}\right)^3\)

\(\Rightarrow x-1=\frac{2}{3}\Rightarrow x=\frac{2}{3}+1=\frac{5}{3}\)

19 tháng 6 2017

1, \(\left(x+7\right)\left(3x-1\right)=49-x^2\)

\(\Leftrightarrow\left(x+7\right)\left(3x-1\right)=\left(7-x\right)\left(7+x\right)\)

\(\Leftrightarrow3x-1=7-x\)

\(\Leftrightarrow4x=8\Leftrightarrow x=2\)

Vậy x = 2

2, \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow\left(x+2\right)2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

Vậy x = -2 hoặc x = 0

3, \(\left(1-2x\right)^2-\left(x+3\right)^2+3\left(x+1\right)\left(1-x\right)=8\)

\(\Leftrightarrow\left(1-2x-x-3\right)\left(1-2x+x+3\right)+3\left(x-x^2+1-x\right)=8\)

\(\Leftrightarrow\left(-2-3x\right)\left(4-x\right)-3x^2+3=8\)

\(\Leftrightarrow-8+2x-12x+3x^2-3x^2=5\)

\(\Leftrightarrow-10x=13\)

\(\Leftrightarrow x=-1,3\)

Vậy x = -1,3

4, \(\left(x-3\right)^2-\left(x+3\right)^2=24\)

\(\Leftrightarrow\left(x-3-x-3\right)\left(x-3+x+3\right)=24\)

\(\Leftrightarrow-6.2x=24\)

\(\Leftrightarrow x=-2\)

Vậy x = -2

1: =>3x-6-5x-5=-9

=>-2x-11=-9

=>-2x=2

hay x=-1

2: =>12(x+1)=3(x+7)

=>4x+4=x+7

=>3x=3

hay x=1

c: =>(x-2)2=16

=>x-2=4 hoặc x-2=-4

=>x=6 hoặc x=-2

5: =>x-3=7

hay x=10

a) \(6.8^{x-1}+8^{x+1}=6.8^{19}+8^{21}\)

\(\Rightarrow x-1+x+1=19+21\)

\(=2x=40\)

\(\Rightarrow x=20\)

b) \(4.3^{x-1}+2.3^{x+2}=4.3^6+2.3^9\)

\(\Rightarrow x-1+x+2=6+9\)

\(\Rightarrow2x+1=15\)

\(\Rightarrow2x=14\)

\(\Rightarrow x=7\)