Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đăng ít một thôi bạn :v
a) 3x - (3 - 2x) = 0
3x - 3 + 2x = 0
5x - 3 = 0
5x = 0 + 3
5x = 3
x = 3/5
b) (x + 2).3 - 4x.3 = 0
3.(x + 2) - 12.x = 0
3[x + 2 - (4x)] = 0
x + 2 - 4 = 0
-3x + 2 = 0
-3x = 0 - 2
-3x = -2
x = 2/3
c) (x - 2)(x - 4)(1 - 7x) = 0
x - 2 = 0 hoặc x - 4 = 0 hoặc 1 - 7x = 0
x = 0 + 2 x = 0 + 4 -7x = 0 - 1
x = 2 x = 4 -7x = -1
x = 1/7
d) 4x2 - 1/4 = 0
4x2 = 0 + 1/4
4x2 = 1/4
x2 = 1/4 : 4
x2 = 1/16
x2 = (1/4)2
x = 1/4 hoặc x = -1/4
e) -3x2 + 48 = 0
3x2 - 48 = 0
3x2 = 0 + 48
3x2 = 48
x2 = 48 : 3
x2 = 16
x2 = 42
x = 4 hoặc x = -4
g) 3(1/2 - 1/3x)3 - 1/9 = 0
3(1/2 - x/3)3 - 1/9 = 0
3(1/2 - x/3)3 = 0 + 1/9
3(1/2 - x/3)3 = 1/9
(1/2 - x/3)3 = 1/9 : 3
(1/2 - x/3)3 = 1/27
(1/2 - x/3)3 = (1/3)3
1/2 - x/3 = 1/3
-x/3 = 1/3 - 1/2
-x/3 = -1/6
-x = -1/6.3
-x = -3/6 = -1/2
x = -1/2
m) 4x3 + 5x4 = 0
x3(4 + 5x) = 0
x = 0 hoặc 4 + 5x = 0
x = 0 5x = 0 - 4
5x = -4
x = -4/5
h) -x3 + 1/64x = 0
-x3 + x/64 = 0
x/64 - x3 = 0
x(1/64 - x3) = 0
x = 0 hoặc 1/64 - x2 = 0
x = 0 -x2 = 0 - 1/64
-x2 = -1/64
x2 = 1/64 = -+1/8
k) (x2 + 1)2 + 3x(x2 + 1) + 2 = 0
x4 + 2x2 + 1 + 3x3 + 3x + 2 = 0
x4 + 2x2 + 3 + 3x3 + 3x = 0
(x3 + 2x2 + 3)(x + 1) = 0
Mà x3 + 2x2 + 3 # 0 nên
x + 1 = 0
x = -1
c) \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
Cho \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)=0\)
⇔ \(\left[{}\begin{matrix}x-2=0\\x-4=0\\1-7x=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=0+2\\x=0+4\\7x=1-0=1\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=2\\x=4\\x=1:7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=2\\x=4\\x=\frac{1}{7}\end{matrix}\right.\)
Vậy \(x=2;x=4\) và \(x=\frac{1}{7}\) đều là nghiệm của đa thức \(\left(x-2\right).\left(x-4\right).\left(1-7x\right)\)
d) \(4x^2-\frac{1}{4}\)
Cho \(4x^2-\frac{1}{4}=0\)
⇔ \(4x^2=0+\frac{1}{4}\)
⇔ \(4x^2=\frac{1}{4}\)
⇔ \(x^2=\frac{1}{4}:4\)
⇔ \(x^2=\frac{1}{16}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{4}\\x=-\frac{1}{4}\end{matrix}\right.\)
Vậy \(x=\frac{1}{4}\) và \(x=-\frac{1}{4}\) đều là nghiệm của đa thức \(4x^2-\frac{1}{4}.\)
e) \(-3x^2+48\)
Cho \(-3x^2+48=0\)
⇔ \(-3x^2=0-48\)
⇔ \(-3x^2=-48\)
⇔ \(x^2=\left(-48\right):\left(-3\right)\)
⇔ \(x^2=16\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
Vậy \(x=4\) và \(x=-4\) đều là nghiệm của đa thức \(-3x^2+48.\)
Mình chỉ làm 3 câu thôi nhé.
Chúc bạn học tốt!
1) \(5^{x+1}-5^x=20\Leftrightarrow5^x\left(5-1\right)=20\Leftrightarrow5^x=5\Leftrightarrow x=1\)
2) \(2^x+2^{x+4}=544\Leftrightarrow2^x\left(1+2^4\right)=544\Leftrightarrow2^x=32\Leftrightarrow x=5\)
3) \(4^{2x+1}+4^{2x}=80\Leftrightarrow4^{2x}\left(4+1\right)=80\Leftrightarrow16^x=16\Leftrightarrow x=1\)
4) \(3^{2x+2}+3^{2x+1}=108\Leftrightarrow3^{2x}\left(3^2+3\right)=108\Leftrightarrow9^x=9\Leftrightarrow x=1\)
5) \(7^{x+3}-7^{x+1}=16464\Leftrightarrow7^x\left(7^3-7\right)=16464\Leftrightarrow7^x=49\Leftrightarrow x=2\)
1: (3x+2)(x+2)(2x-1)
=(3x^2+6x+2x+4)(2x-1)
=(3x^2+8x+4)(2x-1)
=6x^3-3x^2+16x^2-8x+8x-4
=6x^3+13x^2-4
2: (5x+1)(x-1)+3x(2x+2)
=5x^2-5x+x-1+6x^2+6x
=11x^2+10x-1
3: 4x(2x+1)(x-1)+(x+5)(x-3)
=4x(2x^2-2x+x-1)+x^2+2x-15
=8x^3-4x^2-4x+x^2+2x-15
=8x^3-3x^2-2x-15
4: (2x-1)(x+2)(x-2)+(3x-1)(x-1)
=(2x-1)(x^2-4)+3x^2-4x+1
=2x^3-8x-x^2+4+3x^2-4x+1
=2x^3+2x^2-12x+5
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
a, \((\frac{3}{7}-\frac{2}{3})\) .x =\(\frac{10}{21}\)
\(\frac{-5}{21}\).x=\(\frac{10}{21}\)
x= -2
Mk chỉ làm 1 phần các phằn còn lại tương tự
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`