Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)\(A=|x|+|2014-x|\ge|x+2014-x|=2014\)
Dấu '=' xảy ra khi\(x\left(2014-x\right)>0\)
TH1:\(\hept{\begin{cases}x>0\\2014-x>0\end{cases}\Leftrightarrow0< x< 2014\left(n\right)}\)
TH2:\(\hept{\begin{cases}x< 0\\2014-x< 0\end{cases}\left(l\right)}\)
Vậy \(A_{min}=2014\)khi\(0< x< 2014\)
\(b.\)\(|x^2+|x-1||=x^2+2\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+|x-1|=-x^2-2\\x^2+|x-1|=x^2+2\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-2x^2-2\left(l\right)\\|x-1|=2\left(n\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
V...
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=20\end{matrix}\right.\)
Trả lời
Bạn xem tại:
Câu hỏi của Mai Ngọc - Toán lớp 7 - Học toán với OnlineMath
Giải: \(\frac{2x}{2.17}=\frac{y}{2}\)
theo đề ta có: 2x-y=64
=>\(\frac{2x-y}{\left(2.17\right)-2}\)
=\(\frac{64}{32}\)=2
=> vì \(\frac{x}{17}\)=2 => x=2.17=34
\(\frac{y}{2}\)=2 => y=2.2=4
vậy => x=34 và y=4
Ta có :
\(\frac{x}{17}=\frac{y}{2}\)
\(\Rightarrow\frac{2x}{14}=\frac{y}{2}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{14}=\frac{y}{2}=\frac{2x-y}{14-2}=\frac{64}{12}=\frac{16}{3}\)
\(\Rightarrow\begin{cases}x=\frac{112}{3}\\y=\frac{32}{3}\end{cases}\)
a) x : 2 = y : (-5)
⇒ x/2 = y/(-5)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 =
x/2 = 2 ⇒ x = 2.2 = 4
y/(-5) = 2 ⇒ y = 2.(-5) = -10
Vậy x = 4; y = -10
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8
x/2 = 8 ⇒ x = 8.2 = 16
y/5 = 9 ⇒ y = 8.5 = 40
z/6 = 8 ⇒ z = 8.6 = 48
Vậy x = 16; y = 40; z = 48
c) 2x = 3y = 6z
⇒ x/(1/2) = y/(1/3) = z/(1/6)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12
2x = 12 ⇒ x = 12 : 2 = 6
3y = 12 ⇒ y = 12 : 3 = 4
6z = 12 ⇒ z = 12 : 6 = 2
Vậy x = 6; y = 4; z = 2
d) x/3 = y/2 = z/(-3)
⇒ 2x/6 = 3y/6 = 4z/(-12)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4
x/3 = -4 ⇒ x = -4.3 = -12
y/2 = -4 ⇒ y = -4.2 = -8
z/(-3) = -4 ⇒ z = -4.(-3) = 12
Vậy x = -12; y = -8; z = 12
e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36
x/5 = -36 ⇒ x = -36.5 = -180
y/6 = -36 ⇒ y = -36.6 = -216
z/7 = -36 ⇒ z = -36.7 = -252
Vậy x = -180; y = -216; z = -252
f) x/12 = y/13
⇒ 3x/36 = 2y/26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31
x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31
y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31
z/15 = 26/31 ⇒ z = 26/31 . 15 = 390/31
Vậy x = 312/31; y = 338/31; z = 390/31
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x+y/9=y+z/12=z+x/13=2x+2y+2z/9+12+13=2(x+y+z)/34=2.51/34=102/34=3
suy ra: x+y=27; y+z=36: z+x=39
ta có: x+y+z=51
suy ra:
x=51-(y+z)=51-36=15
y=51-(z+x)=51-39=12
z=51-(x+y)51-27=24
Đỗ Văn Dương Nhơng x<y mà bạn , mik cũng tham khảo mấy bài trc ròi, mik ko hiểu tại sao lại nhơ thế ,x<y mà