Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Since when these 2 near each other ( 1 is outermost ) we can simply into the problem for P and Q arrange in a row, and since there are 2 outermost ones so we need to multiply by 2. So when P or Q is at one of any outermost ones, there are : 2! * 2 = 4 ( ways ).
Here, all arangement must count once. So after that, we don't worrry about the second outermost ones because we reduce to the simpler problem. And we do this until there is 1 left ( just work for the odd ones ).
So if n is the number of objects, the formula for this is \(n!-4\left[\frac{\left(n-1\right)}{2}\right]\).
Apply n = 7; we have \(n!-4\left[\frac{\left(n-1\right)}{2}\right]=7!-4\left[\frac{\left(7-1\right)}{2}\right]=5028\)
Ans: 5028 ways
\(a,\dfrac{6}{5}=\dfrac{18}{x}\\ \Rightarrow x=18:\dfrac{6}{5}\\ \Rightarrow x=15\\ b,\dfrac{3}{4}=\dfrac{-21}{x}\\ \Rightarrow x=-21:\dfrac{3}{4}\\ \Rightarrow x=-28\\ c,\dfrac{2}{-7}=\dfrac{18}{x}\\ \Rightarrow x=18:\dfrac{2}{-7}\\ \Rightarrow x=-63\\ d,\dfrac{-5}{2}=\dfrac{10}{-x}\\ \Rightarrow x=-10:\dfrac{-5}{2}\\ \Rightarrow x=4\)
\(a,\dfrac{6}{5}=\dfrac{18}{x}\Rightarrow6.x=5.18=90\\ \Rightarrow6.x=90\\ \Rightarrow x=15\\ b,\dfrac{3}{4}=\dfrac{-21}{x}\Rightarrow3.x=4.21=84\\ \Rightarrow x=28\)
Bài 1:
\(a,8.6+288.\left(x+3\right)^2=50\\ \Leftrightarrow48+288\left(x+3\right)^2=50\\ \Leftrightarrow\left(x+3\right)^2=\dfrac{1}{144}\\ \Leftrightarrow x+3\in\left\{-\dfrac{1}{12};\dfrac{1}{12}\right\}\\ \Leftrightarrow x\in\left\{-\dfrac{37}{12};-\dfrac{35}{12}\right\}\\ Vậy.....\)
\(b,\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
=>Số lượng số hạng của tổng trên là (x+100-x-1):1+1=100(số hạng)
\(\Rightarrow\dfrac{\left(2x+101\right).100}{2}=5750\\ \Rightarrow2x+101=\dfrac{5750.2}{100}\\ \Rightarrow2x+101=115\\ \Rightarrow2x=14\\ \Rightarrow x=7\\ Vậy........\)
a) thuộc
b) không thuộc
c) thuộc
d) thuộc
\(a;q\in X\)
\(b;2\notin X\)
\(c;r\in X\)
\(d;u\in X\)