Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(a,8.6+288.\left(x+3\right)^2=50\\ \Leftrightarrow48+288\left(x+3\right)^2=50\\ \Leftrightarrow\left(x+3\right)^2=\dfrac{1}{144}\\ \Leftrightarrow x+3\in\left\{-\dfrac{1}{12};\dfrac{1}{12}\right\}\\ \Leftrightarrow x\in\left\{-\dfrac{37}{12};-\dfrac{35}{12}\right\}\\ Vậy.....\)
\(b,\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
=>Số lượng số hạng của tổng trên là (x+100-x-1):1+1=100(số hạng)
\(\Rightarrow\dfrac{\left(2x+101\right).100}{2}=5750\\ \Rightarrow2x+101=\dfrac{5750.2}{100}\\ \Rightarrow2x+101=115\\ \Rightarrow2x=14\\ \Rightarrow x=7\\ Vậy........\)
Bài 1:
\(A=3+3^2+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+...+3^{101}\)
\(\Rightarrow3A-A=3^{101}-3\)
\(\Rightarrow2A=3^{101}-3\)
\(\Rightarrow A=\frac{3^{101}-3}{2}\)
b) Ta có: \(\left|x\right|=3\Rightarrow\left\{\begin{matrix}y=3\\y=-3\end{matrix}\right.\)
Thay y = 3 vào B ta có:
B = ..............
Thay y = -3 vào B ta có:
B = .................
Vậy B = ......................
Câu 3:
Ta có: \(\left|x\right|+\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\) ( mỗi số hạng \(\ge0\) )
\(\Rightarrow6x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow x+x+1+x+2+x+3=6x\)
\(\Rightarrow4x+6=6x\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
Vậy x = 3
Câu 4:
Ta có: \(n^2-n-1⋮n-1\)
\(\Rightarrow n\left(n-1\right)-1⋮n-1\)
\(\Rightarrow1⋮n-1\)
\(\Rightarrow n-1\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{2;0\right\}\)
Vậy \(n\in\left\{2;0\right\}\)
Câu 4:
a) Ta có: \(\left|-x+8\right|\ge0\)
\(\Rightarrow A=\left|-x+8\right|-21\ge-21\)
Vậy \(MIN_A=-21\) khi x = 8
b) Ta có: \(\left|-x-17\right|+\left|y-36\right|\ge0\)
\(\Rightarrow B=\left|-x-17\right|+\left|y-36\right|+12\ge12\)
Vậy \(MIN_B=12\) khi \(x=-17;y=36\)
c) Ta có: \(-\left|2x-8\right|\le0\)
\(\Rightarrow C=-\left|2x-8\right|-35\le-35\)
Vậy \(MAX_C=-35\) khi \(x=4\)
d) Ta có: \(3\left(3x-12\right)^2\ge0\)
\(\Rightarrow D=3\left(3x-12\right)^2-37\ge-37\)
Vậy \(MIN_D=-37\) khi x = 4
e) Ta có: \(-3\left|2x+50\right|\le0\)
\(\Rightarrow E=-21-3\left|2x+50\right|\le-21\)
Vậy \(MAX_E=-21\) khi x = -25
g) \(\left(x-3\right)^2+\left|x^2-9\right|\ge0\)
\(\Rightarrow G=\left(x-3\right)^2+\left|x^2-9\right|+25\ge25\)
Vậy \(MIN_G=25\) khi x = 3
a) thuộc
b) không thuộc
c) thuộc
d) thuộc
\(a;q\in X\)
\(b;2\notin X\)
\(c;r\in X\)
\(d;u\in X\)