Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = (x - 1)2 + 12
Do (x - 1)2 \(\ge\)0 \(\forall\)x
=> (x - 1)2 + 12 \(\ge\)12 \(\forall\)x
Dấu "="xảy ra <=> x - 1 = 0 <=> x = 1
Vậy MinA = 12 khi x = 1
b) B = |x + 3| + 2020
Do |x + 3| \(\ge\)0 \(\forall\)x
=> |x + 3| + 2020 \(\ge\)2020 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinB = 2020 khi x = -3
(c;d max hay min ?)
a) \(A=\left(x-1\right)^2+12\ge12\left(\forall x\right)\)
\("="\Leftrightarrow x=1\)
b) \(B=\left|x+3\right|+2020\ge2020\left(\forall x\right)\)
\("="\Leftrightarrow x=-3\)
c) \(C=\frac{5}{x-2}\ge\frac{5}{-1}=-5\left(\forall x\right)\)
\("="\Leftrightarrow x=1\)
d) \(D=\frac{x+5}{x-4}=1+\frac{9}{x-4}\ge1+\frac{9}{-1}=-8\left(\forall x\right)\)
\("="\Leftrightarrow x=3\)
Mik chỉ làm 1 câu chung cho bài 1 thôi nha , mấy câu sau giống .
Tìm x , biết :
a) ( x + 1) 2 . ( x - 2 )2 = 0
=> \(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy x = -1 hoặc x = 2 .
Bài 2 , rút gọn biểu thức :
A = a.(b -c) - b.(a+c)
= ab - ac - ( ab + bc )
= ab - ac - ab - bc
= ac - bc
= c .(a-b)
C = (a+3b).c - d - (3a-d).(b+c) - 2c.(b - a) + 2b.(a+d)
= ac + 3bc - d - (3a - d).(b+c) - 2cb - 2ca + 2ba + 2bd
= ac + ( 3bc - 2bc ) - d - ( 3a - d) . ( b+c) +(-2ca + 2ba ) +2db
= ac + bc - d - ( 3a -d) . ( b+c) -2a + cb + 2db
= (a+b).c - d - (3a-d) . ( b+c) - 2a + (2d+c).b
= .........(mik chịu )..........