\(\sqrt{x-2}\)=0

Mn giúp em với ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

x-4-√x-2=0(x\(\ge\)2,x-4\(\ge\)\(\sqrt{ }\)x-2)

<=>x-4=√x-2

<=>(x-4)^2=x-2

<=>x^2-8x+16=x-2

<=>x^2-8x-x+16+2=0

<=>x^2-9x+18=0

có △=(-9)^2-4.18=9>0

=>x1=(9+√9)/2=6(thỏa mãn)

x2=(9-√9)/2=3(loại)(vì 3-4=-1,-1<1)

=>x=6 

 

 

 

5 tháng 5 2021

điều kiện ấy tui nghĩ là (x≥4) sửa lại hộ

25 tháng 8 2019

\(M=\frac{x-2-\sqrt{x}-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

a.Ta co:\(x^2-x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(l\right)\\x=1\left(n\right)\end{cases}}\)

\(\Rightarrow M=\frac{1-2}{1}=-1\)

b.De \(M\in Z\Rightarrow\frac{\sqrt{x}-2}{\sqrt{x}}\in Z\Rightarrow\sqrt{x}-2⋮\sqrt{x}\Rightarrow x=4\)

25 tháng 8 2019

Mình cảm ơn bạn nhiều nha ^^

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

25 tháng 8 2019

a,Đk: \(x>0\)

Sau khi rút gọn được M=\(\frac{\sqrt{x}-2}{\sqrt{x}}\)

\(x^2-x=0\) <=> \(x\left(x-1\right)=0\)=>x-1=0(vì x>0)

<=>x=1(t/m)

Thay x=1 vào b/thức M đã rút gọn có:

M= \(\frac{\sqrt{1}-2}{\sqrt{1}}=-1\)

b, Có \(M=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)

Để M \(\in Z\) <=> \(\frac{2}{\sqrt{x}}\in Z\) => \(\frac{2}{\sqrt{x}}\in N^+\)

Với \(x\in N^+\)=> \(\left[{}\begin{matrix}\sqrt{x}\in N^+\\\sqrt{x}\notin N^+\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\frac{2}{\sqrt{x}}\in N^+\left(tm\right)\\\frac{2}{\sqrt{x}}\notin N^+\left(ktm\right)\end{matrix}\right.\)

=> \(\sqrt{x}\) thuộc ước tự nhiên của 2

<=> \(\sqrt{x}\in\left\{1,2\right\}\) <=> \(x\in\left\{1;4\right\}\)

Vậy để M\(\in Z< =>x\in\left\{1;4\right\}\)

25 tháng 8 2019

bạn tự tính M nha

26 tháng 9 2018

a)\(\Leftrightarrow\)\(7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)

 \(\Leftrightarrow\) \(3\sqrt{x-2}=8\)

  \(\Leftrightarrow\) \(\sqrt{x-2}=24\)

\(\Leftrightarrow\)\(x-2=576\)\(\Leftrightarrow x=578\)

c)\(\Leftrightarrow GTTĐ\left(x-1\right)=\sqrt{2}-1\)\(TH1:x-1>0\)

\(\Rightarrow x-1=\sqrt{2}-1\)\(\Leftrightarrow x=\sqrt{2}\)

\(TH2:x-1< 0\)

\(\Rightarrow1-x=\sqrt{2}-1\)

\(\Leftrightarrow x=2+\sqrt{2}\)

d)\(TH1:x-10=0\Rightarrow x=10\)

\(TH2:\sqrt{x-4}=0\Rightarrow x=4\)

câu b) thì mik cần thêm time

12 tháng 7 2018

\(A=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=4\sqrt{x}-\left(\sqrt{x}+3\right)\)

\(=3\sqrt{x}-3\)

\(B=\frac{\sqrt{\left(3x+2\right)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)

\(TH1:3x+2>0\Rightarrow B=1\)

\(TH2:3x+2< 0\Rightarrow B=-1\)

12 tháng 7 2018

A <=> 4√x - [ ( (√x )^2 + 2√x3+ 3^2)*( √x -3)]/ (x-9)

<=> 4√x - [(√x+3)^2×(√x-3)]/( x-9)

<=> 4√x - [(√x+3)*(x-9)]/(x-9)

<=> 4√x - √x -3

<=> 3√x -3

b, <=> √[(3*x) ^2+2*3x*2+2^2]/(3x+2)

<=> √[( 3x+2)^2] /(3x+2) 

<=> (3x+2)/(3x+2) = 1

4 tháng 7 2017

\(a,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

\(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

\(=\sqrt{xy}\)

\(b,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\)

\(=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Chúc bạn học giỏi 

Kết bạn với mình nha 

21 tháng 7 2017

Điều kiện xác định bạn tự tìm

a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý

pt vô nghiệm

b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)

<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)

c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)

<=>x=2 còn cái kia vô nghiệm

bạn tự trình bày chi tiết nhé

20 tháng 7 2017

a) bình phương -> rút gọn-> giải nghiệm

b,c) chuyển những phần tử không có căn sang vế phải->bình phương->rút gọn->tìm nghiệm

22 tháng 8 2019

undefinedundefined

27 tháng 8 2019

Em cảm ơn ạ !!!