K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2021

(x-2y)2(x+2y)

=[(x-2y)(x+2y)] . (x-2y)

= [x2 - (2y)2](x-2y)

= (x2 - 4y2)(x-2y)

= x3 - 2x2y - 4xy2 + 8y3

21 tháng 9 2021

mình viết nhầm đề phải là ...(x+2y)^2

5 tháng 10 2020

a. (x + y)2 = x2 + 2xy + y2

b. (x - 2y)2 = x2 - 4xy - 4x2

c. (xy2 + 1)(xy2 - 1) = x2y4 - 1

d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4

19 tháng 7 2017

giải

a/(x+2)^3=x^3+3.x^2.2+3.x.2^2+2^3

19 tháng 7 2017

(2x+1)^3=2x^3+3.2x^2.1+3.2x.1^2+1^3

12 tháng 8 2018

mấy cả +23 thành -23 nữa nhé

12 tháng 8 2018

\(\left(3x-2y\right)^3=\left(3x\right)^3-3.\left(3x\right)^2.2y+3.3x.\left(2y\right)^2-\left(2y\right)^3\)

\(=27x^3-54x^2y+36xy^2-8y^3\)

14 tháng 8 2020

a, \(\left(x+2\right)^2=x^2+4x+2^2=x^2+4x+4\)

b, \(\left(x-1\right)^2=x^2-2x+1\)

c, \(\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)

Dựa vào công thức làm nốt nhé 

14 tháng 8 2020

a) ( x + 2 )2 = x2 + 4x + 4

b) ( x - 1 )2 = x2 - 2x + 1

c) ( x2 + y2 )2 = x4 + 2x2y2 + y4

d) ( x3 + 2y2 )2 = x6 + 4x3y2 + 4y4

e) ( x2 - y2 )2 = x4 - 2x2y2 + y4

f) ( x - y2 )2 = x2 - 2xy2 + y4

8 tháng 7 2017

\(B=-x^2-2y^2-2xy+2y\)

\(=-x^2-2xy-y^2-y^2+2y-1+1\)

\(=-\left(x+y\right)^2-\left(y-1\right)^2+1\le1\) đạt GTLN là 1

Khi x = - 1; y = 1

9 tháng 7 2017

cảm ơn bạn Đinh Đức Hùng nha

22 tháng 8 2020

a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)

d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)

e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)

f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)

22 tháng 8 2020

a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)