K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2020

a. (x + y)2 = x2 + 2xy + y2

b. (x - 2y)2 = x2 - 4xy - 4x2

c. (xy2 + 1)(xy2 - 1) = x2y4 - 1

d. (x + y)2(x - y)2 = (x2 + 2xy + y2)(x2 - 2xy + y2) = x4 - (2xy + y2)2 = x4 - (4x2y2 + y4) = x4 - 4x2y2 - y4

22 tháng 8 2020

a) \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

c) \(\left(-6x-\frac{2}{5}\right)^2=36x^2+\frac{24}{5}x+\frac{4}{25}\)

d) \(\left(xy^2+1\right)\left(xy^2-1\right)=x^2y^4-1\)

e) \(\left(x-y\right)^2\left(x+y\right)^2=\left(x^2-y^2\right)^2=x^4-2x^2y^2+y^4\)

f) \(\left(\frac{1}{2}x-\frac{1}{3}y-1\right)^2=\frac{1}{4}x^2+\frac{1}{9}y^2+1-\frac{1}{3}xy-x+\frac{2}{3}y\)

22 tháng 8 2020

a, \(\left(x+2y\right)^2=x^2+4xy+4y^2\)

b, \(\left(3x-\frac{1}{8}y\right)^2=9x^2-\frac{3}{4}xy+\frac{1}{64}y^2\)

e, \(\left(x-y\right)^2\left(x+y\right)^2=x^4-2x^2y^2+y^4\)

27 tháng 10 2018

Bài 1: Thực hiện phép tính

a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)

b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)

c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)

2) Thực hiện phép tính

a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)

b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)

c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)

Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):

a) (x+y)2+(x-y)2

= \(x^2+2xy+y^2+x^2-2xy+y^2\)

= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

= \(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) (x+2)(x-2)-(x-3)(x+1)

= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)

= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)

c) (x-2)(x+2)-(x-2)2

=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)

d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)

= \(8x^3+y^3-\left(8x^3-y^3\right)\)

= \(8x^3+y^3-8x^3+y^3\)

= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)

6 tháng 7 2021

a) x4 + x2 - 27x - 9 

= (x4 - 27x) + x2 - 9

= x(x3 - 27) + (x - 3)(x + 3) 

= x(x - 3)(x2 + 3x + 9) + (x - 3)(x + 3) 

= (x - 3)(x3 + 3x2 + 9x + x + 3) 

= (x - 3)(x3 + 3x2 + 10x + 3)

b) x2 - xy - x  + y 

= x(x - y) - (x - y)

= (x - 1)(x - y)

c) xy + 4 - x2 + 2y

= (xy + 2y) - (x2 - 4)

= y(x + 2) - (x - 2)(x + 2) 

= (x + 2)(y - x + 2)

d) xy + y - 2(x + 1)

= y(x + 1) - 2(x + 1)

= (y - 2)(x + 1)

13 tháng 8 2016

B2:

b, ( x + 2 )- ( x - 1 )2

= (x+2 - x+1) (x+2 +x-1)

= 3(2x+1)

13 tháng 8 2016

B1: a) x^2 -x 

= x (x-1)

b) 5x ^2 - 5

= 5(x^2 -1)

= 5(x-1)(x+1)

c) x^2 - 2x + 2y - xy 

= x(x-y) - 2(x-y)

= (x-2)(x-y)

25 tháng 8 2020

a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)

\(A=xy\left(x+y\right)+\left(y-x\right)\)

\(A=\left(-5\right).2\left(-5+2\right)+2+5\)

\(A=30+7=37\)

b) \(B=3x^3-2y^3-6x^2y^2+xy\)

\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)

\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)

\(B=\frac{11}{36}\)

c) \(C=2x+xy^2-x^2y-2y\)

\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)

\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)

\(C=-\frac{11}{36}\)

10 tháng 7 2018

a) xy – 3x + 2y – 6

= (xy - 3x) + (2y - 6)

= x(y - 3) + 2(y - 3)

= (y - 3)(x + 2)

b) x2y + 4xy + 4y – y3

= y(x2 + 4x + 4 - y2)

= y[(x2 + 4x + 4) - y2]

= y[(x + 2)2 - y2]

= y(x + 2 + y)(x + 2 - y)

c) x2 + y2 + xz + yz + 2xy

= (x2 + 2xy + y2) + (xz + yz)

= (x + y)2 + z(x + y)

= (x + y)(x + y + z)

d) x3 + 3x2 – 3x – 1

= (x3 - 1) + (3x2 - 3x)

= (x - 1)(x2 + x + z) + 3x(x - 1)

= (x - 1)(x2 + 4x + 1)

10 tháng 7 2018

a ) 

\(xy-3x+2y-6\)

\(=\left(xy+2y\right)-3x-6\)

\(=y\left(x+2\right)-3\left(x+2\right)\)

\(=\left(y-3\right)\left(x+2\right)\)

b ) 

\(x^2y+4xy+4y-y^3\)

\(=y\left(x^2+4x+4-y^2\right)\)

\(=y\left[\left(x+2\right)^2-y^2\right]\)

\(=y\left(x+2-y\right)\left(x+2+y\right)\)

c ) 

\(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

13 tháng 7 2017

a, x2+2x+1+x+1

=(x2+2x+2)+x

=(x2+2x+12)+x

=(x+1)2+x

=(2x+1)2

=(2x-1).(2x+1 )

14 tháng 7 2017

c,xy-y-2x-2

=(xy-2x)-(y-2)

=x.(y-2)-(y-2) 

=(y-2).x

e,xy+xz+y2+yz

=(xy+y2)+(xz+yz)

=y.(x+y)+z.(x+y)

=(x+y).(y+z)

d,x3+x2+x+1

=(x3+x2)+(x+1)

=x2.(x+1)+(x+1)

=x2.(x+1)

b,y2+xy+x+2y+1

=(y2+2y)+(xy+x+1)

=y.(y+2) + x.(y+2)

=(y+2).(y+x)

14 tháng 8 2020

a, \(\left(x+2\right)^2=x^2+4x+2^2=x^2+4x+4\)

b, \(\left(x-1\right)^2=x^2-2x+1\)

c, \(\left(x^2+y^2\right)^2=x^4+2x^2y^2+y^4\)

Dựa vào công thức làm nốt nhé 

14 tháng 8 2020

a) ( x + 2 )2 = x2 + 4x + 4

b) ( x - 1 )2 = x2 - 2x + 1

c) ( x2 + y2 )2 = x4 + 2x2y2 + y4

d) ( x3 + 2y2 )2 = x6 + 4x3y2 + 4y4

e) ( x2 - y2 )2 = x4 - 2x2y2 + y4

f) ( x - y2 )2 = x2 - 2xy2 + y4