Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1+x^2+x^4+...+x^{26}}{1+x^4+x^8+...+x^{24}}\)
\(=\frac{\frac{\left(x^2-1\right)\left(1+x^2+x^4+...+x^{26}\right)}{x^2-1}}{\frac{\left(x^4-1\right)\left(1+x^4+x^8+...+x^{24}\right)}{x^4-1}}\)
\(=\frac{\frac{x^{28}-1}{x^2-1}}{\frac{x^{28}-1}{x^4-1}}=\frac{x^4-1}{x^2-1}=x^2+1\)
Ta nhận thấy mẫu của biểu thức trên là:
x26+x24+x22+...+x2+1=(x26+x22+...+x2)+(x24+x20+...+x4+1)
=x2(x24+x20+...+x16+...+1)+(x24+x20+...+x4+1)
=(x24+x20+...+1)(x2+1)
Như vậy\(\frac{x^{24}+x^{20}+x^{16}+...+1}{\left(x^{24}+x^{20}+...+1\right)\left(x^2+1\right)}\)=\(\frac{1}{x^2+1}\)
+) \(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)
\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)
\(\Leftrightarrow-11x+22=0\)
\(\Leftrightarrow-11\left(x-2\right)=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
+) \(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+4x+9x+6+\left(2-6x\right)\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)
\(\Leftrightarrow12x+7=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
2x( x - 4 ) - x( 2x + 3 ) + 22 = 0
<=> 2x2 - 8x - 2x2 - 3x + 22 = 0
<=> -11x + 22 = 0
<=> -11x = -22
<=> x = 2
( 2x + 3 )( 3x + 2 ) + 2( 1 - 3x )( x + 1/2 ) = 1
<=> 6x2 + 13x + 6 + 2( -3x2 - 1/2x + 1/2 ) = 1
<=> 6x2 + 13x + 6 - 6x2 - x + 1 = 1
<=> 12x + 7 = 1
<=> 12x = -6
<=> x = -6/12 = -1/2
Vì: \(\left(x-1\right)^{26}\ge0\forall x\)
\(\left(3+x\right)^{22}\ge0\forall x\)
=>\(\left(x-1\right)^{26}+\left(3+x\right)^{22}\ge0\forall x\)
Mà: \(\left(x-1\right)^{26}+\left(3+x\right)^{22}=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{26}=0\\\left(3+x\right)^{22}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}\Rightarrow}}\) ko cs giá trị thỏa mãn
=.= hok tốt!!