K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

+) \(2x\left(x-4\right)-x\left(2x+3\right)+22=0\)

\(\Leftrightarrow2x^2-8x-2x^2-3x+22=0\)

\(\Leftrightarrow-11x+22=0\)

\(\Leftrightarrow-11\left(x-2\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

+) \(\left(2x+3\right)\left(3x+2\right)+2\left(1-3x\right)\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow6x^2+4x+9x+6+\left(2-6x\right)\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow6x^2+13x+6+2x+1-6x^2-3x=1\)

\(\Leftrightarrow12x+7=1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

18 tháng 8 2020

2x( x - 4 ) - x( 2x + 3 ) + 22 = 0

<=> 2x2 - 8x - 2x2 - 3x + 22 = 0

<=> -11x + 22 = 0

<=> -11x = -22

<=> x = 2

( 2x + 3 )( 3x + 2 ) + 2( 1 - 3x )( x + 1/2 ) = 1

<=> 6x2 + 13x + 6 + 2( -3x2 - 1/2x + 1/2 ) = 1

<=> 6x2 + 13x + 6 - 6x2 - x + 1 = 1

<=> 12x + 7 = 1 

<=> 12x = -6

<=> x = -6/12 = -1/2

2 tháng 11 2019

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)

1 tháng 12 2016

1,X=-1 hoặc 3

2,Tìm x sao cho (x+3) và (3x-2) ko bằng 0

3 tháng 8 2023

a) \(\left(2x-3\right)\left(2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)

b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)

\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)

\(\Rightarrow x\left(6x-2-15-6x\right)\)

\(\Rightarrow-16x=0\)

\(\Rightarrow x=0\)

d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)

\(\Rightarrow9x^2-4-4x+4=0\)

\(\Rightarrow9x^2-4x=0\)

\(\Rightarrow x\left(9x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)

3 tháng 8 2023

\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)

26 tháng 7 2016

b1

A=(125+2)2 - (125-2)2 = 1272 - 123= 1000

19 tháng 8 2016

a) = 1000

tíck mik nha

27 tháng 6 2019

Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu

27 tháng 6 2019

a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14) 

=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84

=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84) 

=> 156 -  56x = 24x - 324 

=>  24x + 56x = 324 + 156 

=> 80x = 480 

=> x = 480 : 80 =  6 

Vậy x = 6 

a: \(=\dfrac{2x^4+x^3-5x^2-3x-3}{x^2-3}\)

\(=\dfrac{2x^4-6x^2+x^3-3x+x^2-3}{x^2-3}\)

\(=2x^2+x+1\)

b: \(=\dfrac{x^5+x^2+x^3+1}{x^3+1}=x^2+1\)

c: \(=\dfrac{2x^3-x^2-x+6x^2-3x-3+2x+6}{2x^2-x-1}\)

\(=x+3+\dfrac{2x+6}{2x^2-x-1}\)

d: \(=\dfrac{3x^4-8x^3-10x^2+8x-5}{3x^2-2x+1}\)

\(=\dfrac{3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5}{3x^2-2x+1}\)

\(=x^2-2x-5\)