K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2016

\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)

22 tháng 4 2020

Ta có : 

\(x\left(x+1\right)=n\left(n+2\right)\)

\(\Leftrightarrow x^2+x=n^2+2n\)

\(\Leftrightarrow x^2+x+1=n^2+2n+1\)

\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)

Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương 

\(x>0\), Ta có : \(x^2+x+1>x^2\)

                             \(x^2+x+1< x^2+x+1+x=x^2+2x+1\)

                                                                                            \(=\left(x+1\right)^2\)

\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)

Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)

=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp 

Vậy không thể tồn tại số nguyên dương x 

23 tháng 1 2021

Giả sử tồn tại số nghuyên n thỏa mãn \(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)

Ta có \(n^3+2018n=n^3-n+2019n=n\left(n-1\right)\left(n+1\right)+2019⋮3\)

Mặt khác \(2020^{2020}+1=\left(2019+1\right)^{2020}+1\) chia 3 dư 2

\(\Rightarrow\) vô lí

Vậy không tồn tại số nguyên n thỏa mãn yêu cầu bài toán

5 tháng 11 2017

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

NV
25 tháng 3 2022

Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)

\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)

\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=f\left(x\right).f\left(x+1\right)\)

Thay \(x=2021\)

\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)

Đặt \(f\left(2021\right)+2021=k\)

Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên

\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên 

Hay tồn tại số nguyên k thỏa mãn yêu cầu