Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm thử theo cách cổ truyền vậy -.-
Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)
\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)
\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)
Coi pt trên là pt bậc 2 ẩn n
Ta có : \(\Delta=4m^4+4m^2+32m-63\)
Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương
Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)
Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)
Khi đó \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)
Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)
Nên điều giả sử là sai .
Tức là\(m\le2\)
Mà \(m\inℕ^∗\)
\(\Rightarrow m\in\left\{1;2\right\}\)
*Với m = 1 thì pt ban đầu trở thành
\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)
\(\Leftrightarrow n^2+n+1=-5\)
\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)
Pt vô nghiệm
*Với m = 2 thì pt ban đầu trở thành
\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)
\(\Leftrightarrow n^2+n+1=21\)
\(\Leftrightarrow n^2+n-20=0\)
\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)
\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)
Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)
Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC , ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC
CMR: a,P ; I ; Q thẳng hàng
b, đường thẳng PQ đi qua trung điểm HK
Bài cuối có Max nữa nhé, cần thì ib mình làm cho.
Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)
Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)
Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị
\(n^2+2n-x^2-x=0.\)
\(\Delta'_n=1+x^2+x\ne k^2\left(k\in Z\right)\Rightarrow dpcm\)
Ta có :
\(x\left(x+1\right)=n\left(n+2\right)\)
\(\Leftrightarrow x^2+x=n^2+2n\)
\(\Leftrightarrow x^2+x+1=n^2+2n+1\)
\(\Leftrightarrow x^2+x+1=\left(n+1\right)^2\)
Vì n là số nguyên cho trước thì \(\left(n+1\right)^2\) là một số chính phương
\(x>0\), Ta có : \(x^2+x+1>x^2\)
\(x^2+x+1< x^2+x+1+x=x^2+2x+1\)
\(=\left(x+1\right)^2\)
\(\Rightarrow x^2< x^2+x+1< \left(x+1\right)^2\)
Hay \(x^2< \left(n+1\right)^2< \left(x+1\right)^2\)
=> Vô lí do không thể có số chính phương nào tồn tại giữa hai số chính phương liên tiếp
Vậy không thể tồn tại số nguyên dương x
Với \(x=y=1\) ko thỏa mãn
Nếu trong 2 số x;y có ít nhất 1 số lớn hơn 1
\(\Rightarrow\left\{{}\begin{matrix}xy+x+y>3\\x^2+y^2+1>3\end{matrix}\right.\) ta chỉ có 2 trường hợp sau:
TH1: \(\left\{{}\begin{matrix}xy+x+y=5\\x^2+y^2+1=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=5\\x^2+y^2=5\end{matrix}\right.\)
Dễ dàng giải hệ ra \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)
Th2: \(\left\{{}\begin{matrix}xy+x+y=6\\x^2+y^2+1=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}xy+x+y=6\\x^2+y^2=4\end{matrix}\right.\) (vô nghiệm do ko có 2 số nguyên dương nào có tổng các bình phương bằng 4)