Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\widehat {ABE} = \widehat {ACD} \Rightarrow BE//CD\) (hai góc đồng vị bằng nhau)
Trong tam giác \(ACD\) có \(BE//CD\).
Theo hệ quả của định lí Thales ta có:
\(\frac{{AB}}{{AC}} = \frac{{BE}}{{CD}}\) mà \(AC = AB + BC = 8 + 8 = 16\)
Suy ra, \(\frac{8}{{16}} = \frac{3}{{CD}} \Rightarrow CD = \frac{{3.16}}{8} = 6\).
Vậy bề rộng \(CD\) của con sông là 6m.
a: Gọi OH là khoảng cách từ O đến AB
Suy ra: OH\(\perp\)AB
Xét \(\left(O\right)\) có
OH là một phần đường kính
AB là dây
OH\(\perp\)AB
Do đó: H là trung điểm của AB
Suy ra: \(AH=BH=\dfrac{AB}{2}=\dfrac{24}{2}=12\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHO vuông tại H, ta được:
\(OA^2=OH^2+AH^2\)
\(\Leftrightarrow OH^2=13^2-12^2=25\)
hay OH=5cm
Ta có: \(AB = AM + MB = 4,73 + 4,27 = 9m\);\(CD = CN + ND = 1,84 + 1,16 = 3m\)
Xét tam giác \(AIB\) tam giác \(CID\) ta có:
\(\widehat {ABI} = \widehat {CDI}\) (giả thuyết)
\(\widehat {AIB} = \widehat {CID}\) (hai góc đối đỉnh)
Do đó, \(\Delta AIB\backsim\Delta CID\) (g.g)
Suy ra, \(\frac{{AB}}{{CD}} = \frac{{AI}}{{CI}} = \frac{{BI}}{{DI}} \Leftrightarrow \frac{9}{3} = \frac{{AI}}{{2,4}} = \frac{{7,8}}{{DI}}\).
Ta có:
\(\frac{9}{3} = \frac{{AI}}{{2,4}} \Rightarrow AI = \frac{{9.2,4}}{3} = 7,2m\);\(\frac{9}{3} = \frac{{7,8}}{{ID}} \Rightarrow ID = \frac{{3.7,8}}{9} = 2,6m\).
Các con đường đi từ nhà anh Thanh đến công ty là:
Con đường: \(MB \to BI \to IC \to CN\) có độ dài là:
\(MB + BI + IC + CN = 4,27 + 7,8 + 2,4 + 1,84 = 16,31km\)
Con đường: \(MB \to BI \to ID \to DN\) có độ dài là:
\(MB + BI + ID + DN = 4,27 + 7,8 + 2,6 + 1,16 = 15,83km\)
Con đường: \(MA \to AI \to ID \to DN\) có độ dài là:
\(MA + AI + ID + DN = 4,73 + 7,2 + 2,6 + 1,16 = 15,69km\)
Con đường: \(MA \to AI \to IC \to CN\) có độ dài là:
\(MA + AI + IC + CN = 4,73 + 7,2 + 2,4 + 1,84 = 16,17km\)
Vậy đi theo con đường \(MA \to AI \to ID \to DN\) là ngắn nhất.
Kẻ AG⊥CD, BH⊥CD, IK⊥CD
Chứng minh được \(\Delta BHC=\Delta AGD\left(ch-gn\right)\)
Ta có ABHG là hình chữ nhật
Ta có CH+HG+GD=CD
Mà CH=DG \(\left(\Delta BHC=\Delta AGD\right)\)
\(\Rightarrow\)2HC+HG=CD
Mà HG=AB (ABHG là hình chữ nhật)
\(\Rightarrow\)2HC+AB=CD
\(\Rightarrow\)HC=\(\dfrac{CD-AB}{2}=3\left(cm\right)\)
Theo định lí Pytago: \(BH=\sqrt{BC^2-HC^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Ta có IK//BH (cùng ⊥DC), DI=IB
\(\Rightarrow\)IK là đường trung bình \(\Delta DBH\)
\(\Rightarrow IK=\dfrac{1}{2}BH=\dfrac{1}{2}\cdot4=2\left(cm\right)\)
Ta có \(\widehat {ABE} = \widehat {ACD}\), mà hai góc này ở vị trí đồng vị nên \(BE//CD\).
Ta có: \(AC = AB + BC = 200 + 400 = 600m\)
Xét tam giác \(ACD\) có \(BE//CD\) nên theo hệ quả của định lí Thales ta có:
\(\frac{{AB}}{{AC}} = \frac{{BE}}{{CD}} \Rightarrow \frac{{200}}{{600}} = \frac{{120}}{{CD}}\). Do đó, \(CD = \frac{{120.600}}{{200}} = 360\).
Vậy \(CD = 360m\).