Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt P = ...
* Chứng minh P > 1/2 :
\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)
Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là:
\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)
\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)
Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)
\(\Rightarrow\)\(P>\frac{1}{2}\)
* Chứng minh P < 3/4 :
Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)
\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)
\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)
...
\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)
\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)
\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 )
\(\Rightarrow\)\(P< \frac{3}{4}\)
Giải:
Ta có:
\(\sqrt{1}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{n}}\)
\(\sqrt{2}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{n}}\)
\(\sqrt{3}< \sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{n}}\)
...
\(\sqrt{n}=\sqrt{n}\Leftrightarrow\dfrac{1}{\sqrt{n}}=\dfrac{1}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n}}+...+\dfrac{1}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\dfrac{n}{\sqrt{n}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}>\sqrt{n}\)
Vậy ...
Số số hạng của tổng trên là:
[ 2n - (n+1) ] :1 +1 = n số hạng
Ta có
n+1 ; n +2 ; n +3 ; ... ; 2n -1 \(\le\) 2n
\(\Rightarrow\dfrac{1}{n+1};\dfrac{1}{n+2};\dfrac{1}{n+3};...;\dfrac{1}{2n-1}\ge\dfrac{1}{2n}\)
\(\Rightarrow\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2n}+\dfrac{1}{2n}+\dfrac{1}{2n}+...+\dfrac{1}{2n}\)
(n phân số \(\dfrac{1}{2n}\))
= \(\dfrac{1}{2}\)
Vậy \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2}\)