K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 3 2018

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(x^2+y^3\geq x^3+y^4\)

\(\Rightarrow x^2+y^3+y^2\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}\)

\(\Leftrightarrow x^2+y^3+y^2\geq x^3+2y^3\Leftrightarrow x^2+y^2\geq x^3+y^3(1)\)

Áp dụng BĐT Bunhiacopxky:

\((x^3+y^3)(x+y)\geq (x^2+y^2)^2(2)\)

Từ \((1); (2)\Rightarrow (x^2+y^2)(x+y)\geq (x^3+y^3)(x+y)\geq (x^2+y^2)^2\)

\(\Leftrightarrow x+y\geq x^2+y^2(3)\)

Theo Bunhiacopxky: \((x^2+y^2)(1+1)\geq (x+y)^2(4)\)

Từ \((3); (4)\Rightarrow x+y\geq \frac{(x+y)^2}{2}\Rightarrow x+y\leq 2\)

Do đó: \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\Rightarrow \) đpcm.

Dấu bằng xảy ra khi $x=y=1$

7 tháng 2 2019

Dùng bất đẳng thức phụ:(x+y)2≥4xy

Ta có (a+b)2≥4ab ;(c+b)2≥4cb;(a+c)2≥4ac

⇒(a+b)2(b+c)2(a+c)2≥64(abc)2

do đó (a+b)(b+c)(c+a)8abc

Dấu “=” xảy ra khi a = b = c



7 tháng 2 2019

AD BĐT cô si cho số không âm

(a+b)(a+c)(b+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{ac}.2\sqrt{bc}\)=8\(\sqrt{\left(abc\right)^2}\)=8abc

NV
20 tháng 9 2019

Đáp án đúng là D

20 tháng 9 2019

Thank you

18 tháng 4 2017

a) \(\exists x\in Z:x=x^2\)

16 tháng 5 2017

a) \(\exists a\in\mathbb{Z}:a=a^2\)

b) \(\forall x\in\mathbb{R}:x+0=x\)

c) \(\exists x\in\mathbb{Q}:x< \dfrac{1}{x}\)

d) \(\forall n\in\mathbb{N}:n>0\)