Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M G H
\(\text{a) }\overrightarrow{AH}=\overrightarrow{AG}+\overrightarrow{GH}=\overrightarrow{AG}+\overrightarrow{BG}=\frac{1}{3}\left(3\overrightarrow{AG}+3\overrightarrow{BG}\right)\\ =\frac{1}{3}\left(\overrightarrow{AA}+\overrightarrow{AC}+\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{BC}+\overrightarrow{BB}\right)\\ =\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BC}\right)=\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{BA}+\overrightarrow{AC}\right)\\ =\frac{1}{3}\left(2\overrightarrow{AC}-\overrightarrow{AB}\right)=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\text{b) }\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}=-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\)
\(\text{c) }\overrightarrow{MH}=\overrightarrow{MC}+\overrightarrow{CH}=\frac{1}{2}\overrightarrow{BC}-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)-\frac{1}{3}\left(\overrightarrow{AC}+\overrightarrow{AB}\right)\\ =-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\\ =\frac{1}{6}\overrightarrow{AB}-\frac{5}{6}\overrightarrow{AB}\)
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
a) Áp dụng BĐT Cauchy-Schwarz dạng Engel: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Tương tự:\(\frac{1}{b}+\frac{1}{c}\ge\frac{4}{b+c};\frac{1}{c}+\frac{1}{a}\ge\frac{4}{c+a}\)
Cộng theo vế 3 BĐT trên rồi chia cho 2 ta thu được đpcm
Đẳng thức xảy ra khi \(a=b=c\)
b)Đặt \(a+b=x;b+c=y;c+a=z\). Cần chứng minh:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Cách làm tương tự câu a.
c) \(VT=\Sigma_{cyc}\frac{1}{\left(a+b\right)+\left(a+c\right)}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\le\frac{1}{16}\Sigma\left(\frac{2}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
Đẳng thức xảy ra khi \(a=b=c=\frac{3}{4}\)
d) Em làm biếng quá anh làm nốt đi:P
Làm lại:
\(VT\le\frac{1}{2a\sqrt{bc}}+\frac{1}{2b\sqrt{ca}}+\frac{1}{2c\sqrt{ab}}\)
\(=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2abc}=\frac{a+b+c}{2abc}\)
Đẳng thức xảy ra khi a =b = c .
Ngắn gọn súc tích không biết có lỗi gì không đây:)
BĐT là đối xứng giúp em nghĩ đến cách đặt \(p=a+b+c;q=ab+bc+ca;r=abc\)
BĐT \(\Leftrightarrow2r\left(\frac{\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)}{\left(a^2+bc\right)\left(b^2+ca\right)\left(c^2+ab\right)}\right)\le p\)
\(\Leftrightarrow2r\left[\Sigma ab\left(a^2+b^2\right)+abc\left(a+b+c\right)+\left(a^2b^2+b^2c^2+c^2a^2\right)\right]\le p\left[abc\left(a^3+b^3+c^3\right)+a^3b^3+b^3c^3+c^3a^3+2\left(abc\right)^2\right]\)\(\Leftrightarrow2r\left[p^2q-q^2-2pr\right]\le p\left[r\left(p^3-3pq+3r\right)+q^3-3pqr+5r^2\right]\)
\(\Leftrightarrow p^4r-8p^2qr+pq^3+12pr^2+2q^2r\ge0\)
\(\Leftrightarrow12pr^2+\left(p^4+2q^2-8p^2q\right)r+pq^3\ge0\)
Chú ý 2p > 0 , theo định lí về dấu tam thức bậc 2, ta cần chứng minh \(\Delta\le0\)
\(\Leftrightarrow\left(p^4+2q^2-8p^2q\right)^2-48p^2q^3\le0\)
Em chịu rồi:( ko bt có sai chỗ nào ko nữa:( Mong tìm được cách giải tự nhiên hơn.
\(a+b\ge1\Rightarrow\left\{{}\begin{matrix}a\ge1-b\\b\ge1-a\end{matrix}\right.\)
\(P=2a+\frac{b}{4a}+b^2=a+\frac{b}{4a}+b^2+a\)
\(P\ge a+\frac{1-a}{4a}+b^2+1-b=a+\frac{1}{4a}+b^2-b+\frac{1}{4}+\frac{1}{2}\)
\(P\ge2\sqrt{\frac{a}{4a}}+\left(b-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(a=b=\frac{1}{2}\)