Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{n^3-1}{n^5+n+1}\)
\(A=\frac{n^3-1^3}{n^5-n^2+n^2+n+1}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)
\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)
\(A=\frac{n-1}{n^3-n^2+1}\)
Dễ thấy n - 1 < n3 - 1; n3 - n2 + 1 < n5 + n + 1
Mà \(\frac{n^3-1}{n^5+n+1}=\frac{n-1}{n^3-n^2+1}\)
=> A có thể rút gọn
=> A chưa tối giản ( đpcm )
Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)
\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)
=> P/s tối giản
Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)
\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)
Từ \(\left(1\right)\): \(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\)
\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)
\(\Rightarrow n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2⋮d\)
\(\Rightarrow n^4+2n^2+1⋮d\)
\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))
Vì \(d>0\)\(\Rightarrow d=1\)
\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)
\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên
Gọi \(d=ƯCLN\left(2n+1;2n^2-1\right);n\in N\)
Ta có:
\(2n+1\)chia hết cho \(d\Rightarrow n\left(2n+1\right)\) chia hết cho \(d\)
và \(2n^2-1\) chia hết cho \(d\)
nên \(\left(n\left(2n+1\right)-2n^2+1\right)\)chia hết cho \(d\)
\(\Leftrightarrow n+1\)chia hết cho \(d\)
\(\Leftrightarrow2n+2\) chia hết cho \(d\)
\(\Leftrightarrow2n+2-\left(2n+1\right)\)chia hết cho \(d\)
\(\Leftrightarrow1\)chia hết cho \(d\Rightarrow d=1\)
Vậy, phân số \(B=\frac{2n+1}{2n^2-1}\) tối giản với \(n\in N\)
a, Gọi \(d=ƯCLN\left(n+4;n+5\right)\left(d\in N\right)\)
\(\Leftrightarrow\hept{\begin{cases}n+4⋮d\\n+5⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(n+4;n+5\right)=1\)
Vậy ...
Ủa anh thấy nó hiển nhiên mà.
Trên tử không có ước nguyên tố là 2, dưới mẫu toàn ước nguyên tố 2 thì làm sao rút gọn được?
hả anh ko thấy đó là điều hiển nhiên mà,
anh ko thấy trên tử ko có biến ak?
lần sau nhớ để ý nhé
Gọi d là ƯC(n3+2n;n4+3n2+1)
n3+2n chia hết d;n4+3n2+1 chia hết d
n(n3+2n) chia hết d ; n4+3n2+1 chia hết d
n4+2n2 chia hết d; n4+3n2+1 chia hết d
(n4+3n2+1) - (n4+2n2) chia hết d
n2+1 chia hết d
n(n2+1) chia hết d
n3+n chia hết d
(n3+2n)-(n3+n) chia hết d
n chia hết d
n2 chia hết d
(n2+1)-(n2) chia hết cho d
1 chia hết d
d=1
PS tối giản
Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :
+) \(n^3+2n⋮d\)
\(\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮d\) (1)
Và \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)
\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)
Từ (1) và (2)
\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)
\(=n^4+2n^3+4n^3+8n^2+15n^2+30n-12n-24+24=\left(n+2\right)\left(n^3+4n^2+15n-12\right)+24\)
\(=\left(n+2\right)\left(n^3-3n^2+7n^2-21n+36n-12\right)+24=\left(n+2\right)\left(n-3\right)\left(n^2+7n+12\right)+24\)
\(=\left(n+2\right)\left(n-3\right)\left(n^2+3n+4n+12\right)+24=\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+1-4\right)+24\)
\(=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)-4\left(n+2\right)\left(n+3\right)\left(n+4\right)+24\)
(n+1)(n+2)(n+3)(n+4) là tích 4 số tự nhiên liên tiếp => chia hết cho 1.2.3.4=24
(n+2)(n+3)(n+4) là tích 3 số tự nhiên liên tiếp => chia hết cho 1.2.3=6 => 4(n+2)(n+3)(n+4) chia hết cho 4.6=24
biểu thức vừa thu gọn là tổng hiệu của các số chia hết cho 24 => chia hết cho 24
a)Gọi ƯCLN(18n+5;29n+8)=d
Ta có: 18n+5 chia hết cho d
=>29(18n+5) chia hết cho d
522n+145 chia hết cho d
có 29n+8 chia hết cho d
=>18(29n+8) chia hết cho d
522n+144 chia hết cho d
=>522n+145-(522n+144) chia hết cho d
=>1 chia hết cho d hay d=1
=>ƯCLN(18n+5;29n+8)=1
=>đpcm
b)tương tự, bạn tìm bội chung nhỏ nhất rồi chia là ra