\(A=\frac{10n^2+9n+4}{20n^2+20n+9}\)  với \(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Giả sử: \(\left(10n^2+9n+4,20n^2+20n+9\right)=d\)

\(\Rightarrow\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)⋮d\)

\(\Rightarrow2n+1⋮d\left(1\right)\)

Ta có: \(10n^2+9n+4=\left(2n+1\right)\left(5n+2\right)+2\)

Mà: \(10n^2+9n+4⋮d\Rightarrow\left(2n+1\right)\left(5n+2\right)+2⋮d\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow2⋮d\Rightarrow2n⋮d\)

Từ: \(\left(1\right)\left(3\right)\Rightarrow1⋮d\Rightarrow d=1\)

Vậy ......

NM
1 tháng 3 2021

ta có \(\frac{10n^2+9n+4}{20n^2+20n+9}\) là phân số tối giản khi

\(\left(10n^2+9n+4,20n^2+20n+9\right)=1\)

mà \(\left(20n^2+20n+9\right)-2\left(10n^2+9n+4\right)=2n+1\)

\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(10n^2+9n+4,20n^2+20n+9\right)\)

mà \(\left(10n^2+9n+4\right)-\left(2n+1\right)\left(5n+2\right)=2\)

\(\Rightarrow\left(10n^2+9n+4,2n+1\right)=\left(2n+1,2\right)=1\)

Vậy \(\left(10n^2+9n+4,20n^2+20n+9\right)=1\) hay phân số đã cho là tối giản

1 tháng 3 2021

Gọi \(ƯCLN\left(10n^2+9n+4;20n^2+20n+4\right)=d\)\(\left(d\ge1\right)\)

Ta có : \(\left(10n^2+9n+4\right)⋮d\)và \(\left(20n^2+20n+9\right)⋮d\)

Hay \(\left[2\left(10n^2+9n+4\right)+2n+1\right]⋮d\)

\(\Rightarrow\left(2n+1\right)⋮d\left(1\right)\)

Mặt khác : \(\left(10n^2+9n+4\right)⋮d\Rightarrow\left(10n^2+9n+2\right)+2⋮d\)\(\Rightarrow\left(5n+2\right)\left(2n+1\right)+2⋮d\)\(\)

Vì \(\left(2n+1\right)⋮d\Rightarrow\left(5n+2\right)\left(2n+1\right)⋮d\)

Mà \(\left(5n+2\right)\left(2n+1\right)+2⋮d\)

\(\Rightarrow2⋮d\left(2\right)\)

Từ (1) và (2) 

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\). \(\Rightarrow\) ƯCLN (\(10n^2+9n+4;20n^2+20n+9\)) =1

\(\Rightarrow\)Phân số trên tối giản

\(\)

9 tháng 11 2016

a)Gọi \(UCLN\left(6n+1;8n+1\right)=d\)

Ta có:

\(\left[4\left(6n+1\right)\right]-\left[3\left(8n+1\right)\right]⋮d\)

\(\Rightarrow\left[24n+4\right]-\left[24n+3\right]⋮d\)

\(\Rightarrow1⋮d\).Suy ra 24n+4 và 24n+3 là 2 số nguyên tố cùng nhau

Vậy \(A=\frac{6n+1}{8n+1}\) là phân số tối giản

b)tương tự

10 tháng 11 2016

tks bn hihahihi

24 tháng 7 2023

Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản

\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)

\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)

\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)

\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))

\(\Rightarrow dpcm\)

24 tháng 7 2023

Chứng minh rằng với mọi số tự nhiên n thì phân số 10�2+9�+420�2+20�+920n2+20n+910n2+9n+4 tối giản

13 tháng 10 2017

Tiếp theo bài giải của bạn Nguyễn Thanh Hằng

\(2n+1⋮d\\ \Rightarrow5n\left(2n+1\right)⋮d\\ \Rightarrow10n^2+5n⋮d\Rightarrow\left(10n^2+9n+4\right)-\left(10n^2+5n\right)⋮d\\ \Rightarrow4n+4⋮d\Rightarrow4.\left(n+1\right)⋮d\\ \Rightarrow n+1⋮d\)

Vì d lẻ do 2n+1 chia hết cho d

\(\Rightarrow2n+2⋮d\\ \Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\\ \Rightarrow1⋮\left(đpcm\right)\)

12 tháng 10 2017

Gọi \(d=ƯCLN\left(10n^2+9n+4;20n^2+20n+9\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}10n^2+9n+4⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}20n^2+18n+8⋮d\\20n^2+20n+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow2n+1⋮d\)

đên đây thì bí

10 tháng 2 2021

Gọi \(d=\left(n^3+2n;n^4+3n^2+1\right)\)

\(\Rightarrow\hept{\begin{cases}\left(n^3+2n\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n\left(n^3+2n\right)=\left(n^4+2n^2\right)⋮d\\\left(n^4+3n^2+1\right)⋮d\end{cases}}\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Leftrightarrow n^2+1⋮d\Leftrightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow\left(n^2+1\right)^2-\left(n^4+2n^2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)

=> P/s tối giản

Gọi \(d=ƯCLN\left(n^3+2n;n^4+3n^2+1\right);\left(d>0\right)\)

\(\Rightarrow\hept{\begin{cases}n^3+2n⋮d\left(1\right)\\n^4+3n^2+1⋮d\end{cases}}\)

Từ \(\left(1\right)\)\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-\left(n^4+2n^2\right)⋮d\)

\(\Rightarrow n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2⋮d\)

\(\Rightarrow n^4+2n^2+1⋮d\)

\(\Rightarrow1⋮d\)(do \(n^4+2n^2⋮d\))

Vì \(d>0\)\(\Rightarrow d=1\)

\(\Rightarrow\left(n^3+2n;n^4+3n^2+1\right)=1\)

\(\Rightarrow\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối tối giản với mọi n nguyên

17 tháng 8 2018

Gọi d là ƯC(n3+2n;n4+3n2+1)

n3+2n chia hết d;n4+3n2+1 chia hết d

n(n3+2n) chia hết d ; n4+3n2+1 chia hết d

n4+2n2 chia hết d; n4+3n2+1 chia hết d

(n4+3n2+1) - (n4+2n2) chia hết d

n2+1 chia hết d

n(n2+1) chia hết d

n3+n chia hết d

(n3+2n)-(n3+n) chia hết d

n chia hết d

nchia hết d

(n2+1)-(n2) chia hết cho d

 1 chia hết d

d=1 

PS tối giản

17 tháng 8 2018

Gọi d là ước chung của \(n^3+2n\) và \(n^4+3n^2+1\) . ta có :

+) \(n^3+2n⋮d\)

\(\Rightarrow n\left(n^3+2n\right)⋮d\)

\(\Rightarrow n^4+2n^2⋮d\)   (1)

Và  \(n^4+3n^2+1-\left(n^4+2n^2\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^2+1\right)^2=n^4+2n^2+1⋮d\) (2)

Từ (1) và (2)

\(\Rightarrow\left(n^4+2n^2+1\right)-\left(n^4+2n\right)^2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

Vậy \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản (đpcm)