Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
Nếu là tìm "cặp số nguyên" thì phải có x và y hoặc x với 1 chữ nào đấy. Bạn kiểm tra lại đề xem, chắc chỉ là "số nguyên x" thôi chứ?
\(x^2+3x+7⋮x+3\)
\(\Leftrightarrow xx+3x+7⋮x+3\)
\(\Leftrightarrow x\left(x+3\right)+7⋮x+3\)
Do \(x\left(x+3\right)⋮x+3\) nên \(7⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
Ta có bảng sau:
\(x+3\) | \(-1\) | \(1\) | \(-7\) | \(7\) |
\(x\) | \(-4\) | \(-2\) | \(-10\) | \(4\) |
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)
\(xy+12=x+y\)
\(xy-x-y=12\)
\(x\left(y-1\right)-y-1=12-1\)
\(x\left(y-1\right)-\left(y-1\right)=11\)
\(\left(y-1\right)\left(x-1\right)=11\)
Vì \(x,y\in Z\Leftrightarrow y-1;x-1\inƯ\left(11\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y-1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y-1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y-1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y-1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=2\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=2\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=-10\\x=0\end{matrix}\right.\end{matrix}\right.\)
Vậy ..
Ta có: \(3\frac{1}{3}+7\frac{3}{17}\cdot\frac{2}{15}-2\frac{3}{17}\cdot\frac{2}{15}\)
\(=\frac{10}{3}+\frac{122}{17}\cdot\frac{2}{15}-\frac{37}{17}\cdot\frac{2}{15}\)
\(=\frac{10}{3}+\frac{244}{255}-\frac{74}{255}\)
\(=\frac{10}{3}+\frac{2}{3}=\frac{12}{3}=4\)
Dùng hỗn số làm trung gian nhé! Mình quên không viết vào đề
\(\frac{45}{10}=\frac{9}{2}=4\frac{1}{2}=4+\frac{1}{2}=4+0,5=4,5\)
\(\frac{834}{10}=\frac{417}{5}=83\frac{2}{5}=83+\frac{2}{5}=83+0,4=83,4\)
\(\frac{1954}{100}=\frac{977}{50}=18\frac{7}{50}=18+\frac{7}{50}=18+0,14=18,14\)
\(\frac{2167}{1000}=2,167\)
\(\frac{2020}{10000}=0,202\)
Ta có:\(\dfrac{x}{-12}=\dfrac{-3}{x}\)
\(\Rightarrow x.x=-3.\left(-12\right)\)
\(x^2=36\)
Vì \(x\in Z\)\(\Rightarrow x=\pm6\)
bài 4 dễ mà , bạn làm xong rồi gửi cho mik , đễ mik xem có đúng k nhé
Gọi phân số đó là \(\dfrac{a}{b}\)\(\left(a;b\in Z,b\ne0\right)\)
Theo bài ra, ta có:
+) \(\dfrac{28}{15}:\dfrac{a}{b}=\dfrac{28}{15}.\dfrac{b}{a}\in N\) ( 1 )
+) \(\dfrac{21}{10}:\dfrac{a}{b}=\dfrac{21}{10}.\dfrac{b}{a}\in N\) ( 2 )
+) \(\dfrac{49}{84}:\dfrac{a}{b}=\dfrac{7}{12}.\dfrac{b}{a}\in N\) ( 3 )
Từ ( 1 ) ⇒ 28b ⋮ 15; 28b ⋮ a ⇒ b ⋮ 15 và 28 ⋮ a
Từ ( 2 ) ⇒ 21b ⋮ 10; 21b ⋮ a ⇒ b ⋮ 10 và 21 ⋮ a
Từ ( 3 ) ⇒ 7b ⋮ 12; 7b ⋮ a ⇒ b ⋮ 12 và 7 ⋮ a
Do đó: b ∈ BC ( 15; 10; 12 ) và a ∈ ƯC ( 28; 21; 7 )
Muốn \(\dfrac{a}{b}\) lớn nhất thì a phải lớn nhất và b phải nhỏ nhất.
⇒ a = ƯCLN ( 28; 21; 7 ) = 7; b = BCNN ( 15; 10; 12 ) = 60
Vậy phân số cần tìm là \(\dfrac{7}{60}\).
\(a)\dfrac{1}{3}x+\dfrac{2}{5}\left(x+1\right)=0\)
\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
\(\Leftrightarrow x\left(\dfrac{5}{15}+\dfrac{6}{15}\right)=\dfrac{-2}{5}\)
\(\Leftrightarrow x.\dfrac{11}{15}=\dfrac{-2}{5}\)
\(\Leftrightarrow x=\dfrac{-2}{5}.\dfrac{15}{11}\)
\(\Leftrightarrow x=\dfrac{-6}{11}\)
Lời giải:
$\frac{1}{m}+\frac{n}{6}=12$
$\Rightarrow 6+mn=72m$
$\Leftrightarrow 6=m(72-n)$
Vì $m,72-n$ là số nguyên với mọi $m,n$ nguyên nên xét các TH:
$m=1; 72-n=6\Rightarrow (m,n)=(1,66)$
$m=6, 72-n=1\Rightarrow (m,n)=(6,71)$
$m=-1, 72-n=-6\Rightarrow (m,n)=(-1,78)$
$m=-6, 72-n=-1\Rightarrow (m,n)=(-6,73)$
$m=-2, 72-n=-3\Rightarrow (m,n)=(-2,75)$
$m=-3, 72-n=-2\Rightarrow (m,n)=(-3,74)$
$m=2, 72-n=3\Rightarrow (m,n)=(2,69)$
$m=3, 72-n=2\Rightarrow (m,n)=(3,70)$