K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

Ta chứng minh: Nếu ƯCLN(a,6)=1 thì a^2 +5 chia hết cho 6 

Từ ƯCLN(a,6)=1=> a không chia hết cho 2, a không chia hết cho 3

do a không chia hết cho 2=>(a-1)chia hết cho 2=>a^2+5=a^2-1+6=(a-1)(a+1)+6 chia hết cho 2  (1)

do a không chai hết cho 3 => (a-1)(a+1)+6 chai hết cho 3    (2) 

Do ƯCLN(2;3)=1nên kết hợp với (1) và (2) được (a-1)(a+1)+6 chia hết cho (2.3)hay a^2+5 chai hết cho 6

Ngược lại: Từ a^2+5 chia hết cho 6 => ƯCLN(a;6)=1

Ta có a^2+5 chia hết cho 6 => (a-1)(a+1)+6 chia hết cho 6 <=>(a-1)(a+1) chia hết cho 6=>(a-1)(a+1) chia hết cho cả 2 và 3 

Với (a-1)(a+1) chia hết 2 =>a lẻ ->ƯCLN(a,3)=1  (3)

Với (a-1)(a+1) chia hết cho 3 mà a-1,a,a+1 là ba số tự nhiên liên tiếp nên có một số chia hết cho 3=>a không chia hết cho 3=>ƯCLN(a,3)=1  (4)

Từ (3) và (4)+>ƯCLN (a,6)=1

Suy ra bài toán đã được chứng  minh

28 tháng 11 2016

 nguyen anh a

20 tháng 11 2016

MAY BN GIUP MK VS NHA

21 tháng 12 2018

Tuyệt lắm bn ới ời

👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👏👏👏👏👏👏👏👏👏👏👏👏

9 tháng 12 2016

Vì p là tích của n số nguyên tố đầu tiên nên p chia hết cho 2 và p không chia hết cho 4 (*) 

Ta chứng minh p+1 là số chính phương: 
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N) 
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ. 
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*) 
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương 

Ta chứng minh p-1 là số chính phương: 
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2. 
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương . 

Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương

9 tháng 12 2016

ngay nao cung phai lm de met oi la met

31 tháng 7 2018

a)

Nếu n lẻ thì (n+1) chẵn => (n+1)x(n+8) chia hết cho 2

Nếu n chẵn thì (n+8) chẵn => (n+1)x(n+8) chia hết cho 2

Nếu n = 0 => 1 x 8 = 8 chia hết cho 2

b)

n^2 + n = n x ( n + 1 )

mà n và n+1 là 2 số liên tiếp => có một số chẵn => chia hết cho 2

31 tháng 7 2018

a)  \(A=\left(n+1\right)\left(n+8\right)\)

Nếu: \(n=2k\)thì:  \(A\)\(⋮\)\(2\)

Nếu:  \(n=2k+1\)thì:  \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=>  \(A\)\(⋮\)\(2\)

Vậy A chia hết cho 2

b)  \(B=n^2+n=n\left(n+1\right)\)

Nếu:  \(n=2k\)thì:  \(B\)\(⋮\)\(2\)

Nếu  \(n=2k+1\)thì:  \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=>  \(B\)\(⋮\)\(2\)

Vậy B chia hết cho 2

10 tháng 7 2016

a) cách 1

 2^4n = (24)n = ......6( có chữ số tận cùng là 6 
=> (2^4n+1)+3= ......0( có chữ số tận cùng là 0) 
=>(2^4n+1)+3 chia hết cho 5 với mọi n thuộc N?

cách 2

(2^4n+1)+3 
=2*(24)n+3 
=2*16n+3 
=2(15 + 1)n+3 
=2(5K+1) +3(với K là một số tự nhiên thuộc N) 
=10K+5 chia hết cho 5

b ) áp dụng vào giống bài a thay đổi số thôi là đc

k mk nha!!!^~^

10 tháng 7 2016

Ta có : (24.n+1)+3 = (.....6) + 1) + 3 = (.....0)

=> (24.n+1)+3 có chữ số tận cùng là 0

=> (24.n+1)+3 chia hết cho 5