Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh: Nếu ƯCLN(a,6)=1 thì a^2 +5 chia hết cho 6
Từ ƯCLN(a,6)=1=> a không chia hết cho 2, a không chia hết cho 3
do a không chia hết cho 2=>(a-1)chia hết cho 2=>a^2+5=a^2-1+6=(a-1)(a+1)+6 chia hết cho 2 (1)
do a không chai hết cho 3 => (a-1)(a+1)+6 chai hết cho 3 (2)
Do ƯCLN(2;3)=1nên kết hợp với (1) và (2) được (a-1)(a+1)+6 chia hết cho (2.3)hay a^2+5 chai hết cho 6
Ngược lại: Từ a^2+5 chia hết cho 6 => ƯCLN(a;6)=1
Ta có a^2+5 chia hết cho 6 => (a-1)(a+1)+6 chia hết cho 6 <=>(a-1)(a+1) chia hết cho 6=>(a-1)(a+1) chia hết cho cả 2 và 3
Với (a-1)(a+1) chia hết 2 =>a lẻ ->ƯCLN(a,3)=1 (3)
Với (a-1)(a+1) chia hết cho 3 mà a-1,a,a+1 là ba số tự nhiên liên tiếp nên có một số chia hết cho 3=>a không chia hết cho 3=>ƯCLN(a,3)=1 (4)
Từ (3) và (4)+>ƯCLN (a,6)=1
Suy ra bài toán đã được chứng minh
tại cậu hay chê người khác kém bây giờ có bài cần hỏi người ta cũng không thèm giúp cậu
a)
Nếu n lẻ thì (n+1) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n chẵn thì (n+8) chẵn => (n+1)x(n+8) chia hết cho 2
Nếu n = 0 => 1 x 8 = 8 chia hết cho 2
b)
n^2 + n = n x ( n + 1 )
mà n và n+1 là 2 số liên tiếp => có một số chẵn => chia hết cho 2
a) \(A=\left(n+1\right)\left(n+8\right)\)
Nếu: \(n=2k\)thì: \(A\)\(⋮\)\(2\)
Nếu: \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(A\)\(⋮\)\(2\)
Vậy A chia hết cho 2
b) \(B=n^2+n=n\left(n+1\right)\)
Nếu: \(n=2k\)thì: \(B\)\(⋮\)\(2\)
Nếu \(n=2k+1\)thì: \(n+1=2k+1+1=2k+2\)\(⋮\)\(2\)=> \(B\)\(⋮\)\(2\)
Vậy B chia hết cho 2
\(D=\left(a+a^2\right)+\left(a^3+a^4\right)+.....+\left(a^{2n-1}+a^{2n}\right)=a\left(1+a\right)+a^3\left(1+a\right)+.....+a^{2n-1}\left(1+a\right)\)
\(=\left(a+1\right)\left(a+a^3+........+a^{2n-1}\right)\)
\(\Leftrightarrow D\)chia hết cho n+1
MAY BN GIUP MK VS NHA
Tuyệt lắm bn ới ời
👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👍👏👏👏👏👏👏👏👏👏👏👏👏