Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left\{x\in N|0\le x\le4\right\}\)
b) \(B=\left\{x\in N|x=4k;0\le k\le4;k\in N\right\}\)
c) \(C=\left\{x\in Z|x=\left(-3\right)^k;1\le k\le4;k\in N\right\}\)
d) \(D=\left\{x\in N|x=k^2;k=3a;1\le a\le4;a\in N\right\}\)
a) \(A=\left\{x\in N|x=3k+1;0\le k\le3;k\in z\right\}\)
b) \(B=\left\{x\in Q^+|x=\dfrac{k}{k^2-1};2\le k\le6;k\in N\right\}\)
Cách nêu tính chất đặc trưng:
A=\(\left\{x/\left(x^2+2x-3\right)\left(x^2-13x+42\right)\right\}\)
B=\(\left\{\frac{2x+1}{2^{x+1}},x\in N,0\le x\le4\right\}\)
A={\(\frac{1}{x^2}\)x={1;2;3;.....;15}}
B={x+a I a={1;3;5;7;.....} ; x2=a1+x1;x3=a3+x3....}
Tất cả các phân số đều có dạng \(\frac{3n+2}{\left(n+1\right)\left(n+2\right)}\) với \(n\ge1\); \(n\in N\)
Bạn tự ghi lại ở dạng tập hợp
Lời giải:
Nếu không dùng PT tích thì ta đi tìm quy luật của dãy số. Cuối cùng thu được kết quả là:
\(X=\left\{x\in\mathbb{Q}:x=\frac{n}{2n^2+1}, n\in\mathbb{N}, 0\leq n\leq 7\right\}\)