Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A. 2x + y + 3 = 0
B. 2x + 3y - 8 = 0
C. 2x + 3y + 8 = 0
D. 3x - 2y + 1 = 0
$BC$ có vectơ chỉ phương là: $\overrightarrow{BC}=(2;3)$
Gọi $H$ là chân đường cao hạ từ $A$ xuống $BC$
$\Rightarrow AH$ có vectơ pháp tuyến là: $\overrightarrow{BC}=(2;3)$
$AH:2x+3y-8=0$
Chọn đáp án: $B$
Sửa đề: x^2+y^2+2x+6y-15=0
Δ vuông góc d nên Δ: 3x+4y+c=0
(C);x^2+y^2+2x+6y-15=0
=>x^2+2x+1+y^2+6y+9-25=0
=>(x+1)^2+(y+3)^2=25
=>R=5; I(-1;-3)
Kẻ IH vuông góc AB
=>H là trung điểm của AB
=>AH=6/2=3cm
=>IH=4cm
=>d(I;Δ)=IH=4
=>|c+3-12|/5=4
=>c=-11 hoặc c=29
=>3x+4y-11=0 hoặc 3x+4y+29=0
Đáp án D là đáp án đúng
Thế tọa độ O lần lượt vào các đáp án thì A: \(2\le0\) (sai), B: \(2\le0\) (sai), C:\(-2\ge0\) (sai)
D: \(2\ge0\) (đúng)
a. \(\left\{{}\begin{matrix}3x-5y=6\\4x+7y=-8\end{matrix}\right.\)
\(x=\dfrac{2}{41}\) ; \(y=\dfrac{-48}{41}\)
b. \(\left\{{}\begin{matrix}\text{−2x+3y=5}\\5x+2y=4\end{matrix}\right.\)
\(x=\dfrac{2}{19};y=\dfrac{33}{19}\)
c.\(\left\{{}\begin{matrix}\text{2x−3y+4z=−5}\\-4x+5y-z=6\\3x+4y-3z=7\end{matrix}\right.\)
\(x=\dfrac{22}{101};y=\dfrac{131}{101};z=\dfrac{-39}{101}\)
d. \(\left\{{}\begin{matrix}\text{− x + 2 y − 3 z = 2}\\2x+y+2z=-3\\-2x-3y+z=5\end{matrix}\right.\)
\(x=-4;y=\dfrac{11}{7};z=\dfrac{12}{7}\)
a)x=0,05 ; y=-1,17
b.x=0,11 ; y=1,74
c.x=0,22 ;y=1,29 z=-0.39
d.x=-4 y=1,57 z=1,71
1.
Phương trình đường thẳng có dạng:
\(2\left(x-2\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-3=0\)
2.
Do d song song \(\Delta\) nên nhận \(\left(2;-3\right)\) là 1 vtpt
Phương trình: \(2\left(x-1\right)-3\left(y-1\right)=0\Leftrightarrow2x-3y+1=0\)
3.
Do đường thẳng vuông góc d nên nhận \(\left(3;4\right)\) là 1vtpt
\(3\left(x-2\right)+4\left(y-3\right)=0\Leftrightarrow3x+4y-18=0\)
Mình làm 1 ý câu a, các ý khác hoàn toàn giống hệt:
Do A là giao điểm của AB và AC nên tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}2x-3y-1=0\\5x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{5}{11};-\frac{7}{11}\right)\)
Gọi AH là đường cao hạ từ A xuống BC, đường thẳng BC nhận \(\left(1;3\right)\) là 1 vtpt, do \(AH\perp BC\Rightarrow\) AH nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình AH:
\(3\left(x+\frac{5}{11}\right)-1\left(y+\frac{7}{11}\right)=0\Leftrightarrow3x-y+\frac{8}{11}=0\)
a: 2x+3y-6=0
=>(d) có VTPT là (2;3) và đi qua A(3;0)
=>VTCP là (-3;2)
PTTS là:
x=3-3t và y=0+2t=2t
b: y=-4x+5
=>4x+y-5=0
=>VTPT là (4;1) và đi qua B(1;1)
=>VTCP là (-1;4)
PTTS là:
x=1-t và y=1+4t
c: 2x-2y+3=0
=>VTPT là (2;-2) và đi qua C(2;3,5)
=>VTCP là (1;1)
PTTS là:
x=2+t và y=3,5+t
d: 4x+5y+6=0
=>VTPT là (4;5) và đi qua D(1;-2)
=>VTCP là (-5;4)
PTTS là:
x=1-5t và y=-2+4t