Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
Giao điểm A của d1 và d2 là nghiệm:
\(\left\{{}\begin{matrix}x+2y+1=0\\x+y-5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=11\\y=-6\end{matrix}\right.\)
\(\Delta\) song song d3 nên nhận (2;3) là 1 vtpt, nên có pt:
\(2\left(x-11\right)+3\left(y+6\right)=0\Leftrightarrow2x+3y-4=0\)
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
Song song với d nên có a = 3
=> Ý B hoặc C
Thay x = 1; y = -2 vào câu B thấy thỏa mãn
Vậy Chọn B
a: Thay y=0vào y=2x-3, ta được:
2x-3=0
=>x=1,5
Vì (d)//(d1) nên (d): y=1/2x+b
Thay x=1,5 và y=0 vào (d), ta được:
b+0,75=0
=>b=-0,75
b: Vì (d)//(d1) nên a=2/3
=>(d): y=2/3x+b
Giao điểm của hai đường y=2x+1 và y=3x-2 là:
3x-2=2x+1 và y=2x+1
=>x=3 và y=7
Thay x=3 và y=7 vào (d),ta được;
b+2=7
=>b=5
a: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0
Vì (d)//3x-2y-5=0 nên (d) có VTPT là (3;-2)
mà (d) đi qua A(0;2)
nên phương trình đường thẳng (d) là:
3(x-0)+(-2)(y-2)=0
=>3x-2y+4=0
b: Gọi phương trình đường thẳng cần tìm là (d): ax+by+c=0
Vì (d)\(\perp\)(3x-2y-5=0) nên (d) nhận \(\overrightarrow{u}=\left(3;-2\right)\) làm vecto chỉ phương
=>VTPT của (d) là (2;3)
mà (d) đi qua A(0;2)
nên phương trình đường thẳng (d) là:
2(x-0)+3(y-2)=0
=>2x+3y-6=0
c: Đặt (d1): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)
=>VTCP là (-2;-5)=(2;5)
=>VTPT là (-5;2)
Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm
Vì (d)//(d1) nên (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến
Vì (d) nhận \(\overrightarrow{v}=\left(-5;2\right)\) làm vecto pháp tuyến và (d) đi qua B(-1;5) nên phương trình đường thẳng (d) là:
-5(x+1)+2(y-5)=0
=>-5x-5+2y-10=0
=>-5x+2y-15=0
d: Đặt (d2): \(\left\{{}\begin{matrix}x=1-2t\\y=3-5t\end{matrix}\right.\)
=>VTCP là (-2;-5)=(2;5)
Gọi (d): ax+by+c=0 là phương trình đường thẳng cần tìm
Vì (d)\(\perp\)(d2) và \(\overrightarrow{u}=\left(2;5\right)\) là vecto chỉ phương của (d2) nên (d) nhận \(\overrightarrow{u}=\left(2;5\right)\) làm vecto pháp tuyến
mà (d) đi qua B(-1;5)
nên phương trình đường thẳng (d) là:
2(x+1)+5(y-5)=0
=>2x+2+5y-25=0
=>2x+5y-23=0
Hai đường thẳng song song với nhau nếu chúng có cùng hệ số góc và tung độ gốc khác nhau.
Ta có: y + 2x – 1 = 0 ⇔ y = -2x + 1
Suy ra; đường thẳng y = - 2x + 1 song song với đường thẳng y = -2 x.
Chọn A.
a: =>3y=6x-1
=>y=2x-1/3
Vậy: (a)//(e)
b: y=-0,5x-4
c: y=1/2x+3
d: =>2y=6-x
=>2y=(6-x)/2=-0,5x+3
f: =>y=0,5x+1=1/2x+1
Vậy: (c)//(f), (d)//(b)