K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

a.y= -x2 và y=x -2

Phương trình hoành độ giao điểm của (P) và (d) là:

\(-x^2=x-2\)

\(\Leftrightarrow-x^2+x+2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Thay x=2 vào pt 1: y= -x2

\(\Leftrightarrow y=-\left(2\right)^2\)

\(\Leftrightarrow y=-4\)

Thay x=-1 vào pt 2: y=x-2

\(\Leftrightarrow y=-1-2\)

\(\Leftrightarrow y=-3\)

Vậy tọa độ giao điểm của (P) và (d) lần lượt là (2;-4) và (-1;-3)

b.\(y=-\frac{1}{2}x^2-2x-4\)

Phương trình hoành độ giao điểm của (P) và (d) là:

\(-\frac{1}{2}x^2-2x-4=0\)

\(\Leftrightarrow x\left(\frac{1}{2}x-2\right)=4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\\frac{1}{2}x-2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=12\end{matrix}\right.\)

Thay x=4 vào pt:y=\(-\frac{1}{2}x^2-2x-4\)

\(\Leftrightarrow y=-\frac{1}{2}\times\left(4\right)^2-2\times4-4\)

\(\Leftrightarrow y=-20\)

Thay x=12 vào pt:\(y=-\frac{1}{2}x^2-2x-4\)

\(\Leftrightarrow y=-\frac{1}{2}\times\left(12\right)^2-2\times12-4\)

\(\Leftrightarrow y=-100\)

Vậy tọa độ giao điểm của (P) và (d) lần lượt là (4;-20) và (12;-100)

c.y=x2 +6x +4 và y=-x + 1

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2+6x+4=-x+1\)

\(\Leftrightarrow x^2+7x+3=0\)

\(\Leftrightarrow x\left(x-7\right)=-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x-7=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

Thy x=-3 vào pt (1):y=x2 +6x +4

\(\Leftrightarrow y=\left(-3\right)^2+6\times\left(-3\right)+4\)

\(\Leftrightarrow y=-5\)

Thay x=4 vào pt (2):y=-x + 1

\(\Leftrightarrow y=-\left(4\right)+1\)

\(\Leftrightarrow y=-3\)

Vậy tọa độ giao điểm của (P) và (d) lần lượt là (-3;-5) và (4;-3)

11 tháng 6 2018

Hướng dẫn. Hoành độ giao điểm của parabol và đường thẳng đã cho là nghiệm của phương trình: x 2   +   4 x   –   6   =   2 x   +   2  

⇔   x 1   =   - 4 ;   x 2   =   2

Đáp án: D

11 tháng 9 2019

Phương trình hoành độ giao điểm:  x2 – 2x – 1 =  2x + 4

  ⇔ x 2 - 2 x - 1 - 2 x - 4 = 0 ⇔ x 2 - 4 x - 5 = 0 ⇔ [ x = - 1 ⇒ y = 2 x = 5 ⇔ y = 14

Vậy tọa độ giao điểm của hai đồ thị là (-1; 2) và ( 5; 14).

16 tháng 2 2019

Ta có: x + y -6 = 0  ⇔ y = - x + 6

Hoành độ giao điểm của parabol (P) và đường thẳng (d) là nghiệm của phương trình                              

                                x2 – 2x +  5 = -x + 6

⇔ x 2 - x - 1 = 0 ⇔ x = 1 ± 5 2

Vậy hoành độ giao điểm của (P) và (d) là:  x = 1 ± 5 2

29 tháng 6 2019

Cách 1:

Δ1: y = –2x + 4 ⇔ 2x + y – 4 = 0

Δ2Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10 ⇔ x - 2y + 3 = 0

Hai đường thẳng Δ1 và Δ2 có vecto pháp tuyến lần lượt là: n1(2;1); n2(1;-2)

Góc giữa (Δ1) và (Δ2):

Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2:

Δ1: y = –2x + 4 có hệ số góc k1 = –2

Δ2Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10 có hệ số góc k2 = 1/2

Nhận thấy k1.k2 = –1 nên Δ1 ⊥ Δ2 ⇒ (Δ1, Δ2) = 90°.

20 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2-2x-3=x-m\)

\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu

\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)

Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)

\(x^2_2=16x^2_1\)

\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)

\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)

\(\Leftrightarrow15x_1^2+6x_1-9=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)

Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)

Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)

Vậy \(m=\dfrac{111}{25}\)