Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn. Hoành độ giao điểm của parabol và đường thẳng đã cho là nghiệm của phương trình: x 2 + 4 x – 6 = 2 x + 2
⇔ x 1 = - 4 ; x 2 = 2
Đáp án: D
Phương trình hoành độ giao điểm: x2 – 2x – 1 = 2x + 4
⇔ x 2 - 2 x - 1 - 2 x - 4 = 0 ⇔ x 2 - 4 x - 5 = 0 ⇔ [ x = - 1 ⇒ y = 2 x = 5 ⇔ y = 14
Vậy tọa độ giao điểm của hai đồ thị là (-1; 2) và ( 5; 14).
Ta có: x + y -6 = 0 ⇔ y = - x + 6
Hoành độ giao điểm của parabol (P) và đường thẳng (d) là nghiệm của phương trình
x2 – 2x + 5 = -x + 6
⇔ x 2 - x - 1 = 0 ⇔ x = 1 ± 5 2
Vậy hoành độ giao điểm của (P) và (d) là: x = 1 ± 5 2
Cách 1:
Δ1: y = –2x + 4 ⇔ 2x + y – 4 = 0
Δ2: ⇔ x - 2y + 3 = 0
Hai đường thẳng Δ1 và Δ2 có vecto pháp tuyến lần lượt là: n1→(2;1); n2→(1;-2)
Góc giữa (Δ1) và (Δ2):
Cách 2:
Δ1: y = –2x + 4 có hệ số góc k1 = –2
Δ2: có hệ số góc k2 = 1/2
Nhận thấy k1.k2 = –1 nên Δ1 ⊥ Δ2 ⇒ (Δ1, Δ2) = 90°.
Phương trình hoành độ giao điểm:
\(x^2-2x-3=x-m\)
\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu
\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)
Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)
\(x^2_2=16x^2_1\)
\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)
\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)
\(\Leftrightarrow15x_1^2+6x_1-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)
Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)
Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)
Vậy \(m=\dfrac{111}{25}\)
a.y= -x2 và y=x -2
Phương trình hoành độ giao điểm của (P) và (d) là:
\(-x^2=x-2\)
\(\Leftrightarrow-x^2+x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Thay x=2 vào pt 1: y= -x2
\(\Leftrightarrow y=-\left(2\right)^2\)
\(\Leftrightarrow y=-4\)
Thay x=-1 vào pt 2: y=x-2
\(\Leftrightarrow y=-1-2\)
\(\Leftrightarrow y=-3\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (2;-4) và (-1;-3)
b.\(y=-\frac{1}{2}x^2-2x-4\)
Phương trình hoành độ giao điểm của (P) và (d) là:
\(-\frac{1}{2}x^2-2x-4=0\)
\(\Leftrightarrow x\left(\frac{1}{2}x-2\right)=4\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\\frac{1}{2}x-2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=12\end{matrix}\right.\)
Thay x=4 vào pt:y=\(-\frac{1}{2}x^2-2x-4\)
\(\Leftrightarrow y=-\frac{1}{2}\times\left(4\right)^2-2\times4-4\)
\(\Leftrightarrow y=-20\)
Thay x=12 vào pt:\(y=-\frac{1}{2}x^2-2x-4\)
\(\Leftrightarrow y=-\frac{1}{2}\times\left(12\right)^2-2\times12-4\)
\(\Leftrightarrow y=-100\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (4;-20) và (12;-100)
c.y=x2 +6x +4 và y=-x + 1
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2+6x+4=-x+1\)
\(\Leftrightarrow x^2+7x+3=0\)
\(\Leftrightarrow x\left(x-7\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x-7=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)
Thy x=-3 vào pt (1):y=x2 +6x +4
\(\Leftrightarrow y=\left(-3\right)^2+6\times\left(-3\right)+4\)
\(\Leftrightarrow y=-5\)
Thay x=4 vào pt (2):y=-x + 1
\(\Leftrightarrow y=-\left(4\right)+1\)
\(\Leftrightarrow y=-3\)
Vậy tọa độ giao điểm của (P) và (d) lần lượt là (-3;-5) và (4;-3)