Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
Bài 2:
Với $n$ chẵn thì $n+4$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Với $n$ lẻ thì $n+7$ chẵn
$\Rightarrow (n+4)(n+7)$ là số chẵn
Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)
Bài 3:
a.
$101\vdots x-1$
$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$
$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$
Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$
b.
$a+3\vdots a+1$
$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$
$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$
$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$
Xét n có dạng 3k;3k+1;3k+2 (k lớn hơn hoặc = 0)
+ Nếu n=3k thì n(n+4)(n+8) = 3k(3k+4)(3k+8) luôn chia hết cho 3.
+ Nếu n=3k+1 thì n(n+4)(n+8)=(3k+1)(3k+1+4)(3k+1+8)
Vì 3k+1+8 = 3k+9=3(k+3) luôn chia hết cho 3 nên (3k+1)(3k+1+4)(3k+1+8) chia hết cho 3
+ Nếu n=3k+2 thì n(n+4)(n+8) có n+4 = 3k+2+4 = 3k+6 = 3(k+2) luôn chia hết cho 3.
Vậy với mọi stn n thì tích n(n+4)(n+8) luôn chia hết cho 3
\(n\left(n+4\right)\left(n+8\right)=\left(n^2+4n\right)\left(n+8\right)=n^3+8n^2+4n^2+32n\)
\(=n^3+12n^2+32n=12n^2+n.\left(n^2+32\right)\)
Do n.(n2 + 32) luôn chia hết cho 3 và 12n2 chia hết cho 3.
Vậy n( n + 4 )( n + 8 ) chia hết cho 3 (đpcm)