K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

1.

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 

2.

Vì (a+b)⋮ma+b  ⋮  m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)

Tương tự, vì a⋮ma  ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h 

Thay a = m. h vào (1) ta được: m.h + b = m.k 

Suy ra b = m.k – m.h = m.(k – h)  (tính chất phân phối của phép nhân với phép trừ).

Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có   m(k−h)⋮mmk-h  ⋮  m

Vậy b⋮m.b  ⋮  m.  

2 tháng 7 2015

Xét n có dạng 3k;3k+1;3k+2 (k lớn hơn hoặc = 0)

     + Nếu n=3k thì n(n+4)(n+8) = 3k(3k+4)(3k+8) luôn chia hết cho 3.

     + Nếu n=3k+1 thì n(n+4)(n+8)=(3k+1)(3k+1+4)(3k+1+8)

 Vì 3k+1+8 = 3k+9=3(k+3) luôn chia hết cho 3 nên (3k+1)(3k+1+4)(3k+1+8) chia hết cho 3

     + Nếu n=3k+2 thì n(n+4)(n+8) có n+4 = 3k+2+4 = 3k+6 = 3(k+2) luôn chia hết cho 3.

 Vậy với mọi stn n thì tích n(n+4)(n+8) luôn chia hết cho 3

 

2 tháng 7 2015

\(n\left(n+4\right)\left(n+8\right)=\left(n^2+4n\right)\left(n+8\right)=n^3+8n^2+4n^2+32n\)

\(=n^3+12n^2+32n=12n^2+n.\left(n^2+32\right)\)

Do n.(n2 + 32) luôn chia hết cho 3 và 12n2 chia hết cho 3.

Vậy n( n + 4 )( n + 8 ) chia hết cho 3 (đpcm)

13 tháng 11 2018

1)2n+5-2n-1

=>4 chia hết cho 2n-1

ước của 4 là 1 2 4

2n-1=1=>n=.....

tiếp với 2 và 4 nhé

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

1.

$4-n\vdots n+1$

$\Rightarrow 5-(n+1)\vdots n+1$

$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$

$\Rightarrow n\in \left\{0; 4\right\}$

AH
Akai Haruma
Giáo viên
18 tháng 7 2024

2.

Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.

$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$

30 tháng 9 2016

Thầy dạy bọn mày số nguyên tố và hợp số chưa

Bài này tao ko học

Khó nhỉ

Hiểu bài ko

Chế đang ngồi cắn bút

Chán quá lôi văn với GDCD ra làm

Tối nay đi học rồi

Lo quá, vẫn chưa la,f xong bài

30 tháng 9 2016

dễ lắm. các em tự suy nghĩ và logic lên 1 tí là ra ngay à TRỊNH THỊ QUỲNH

Chúc em học tốt

 

10 tháng 11 2015

a) Nếu n = 5k => n(n+5) = 5k.(5k + 5) = 25k(k+1) chia hết cho 25

Nếu n = 5k +1 => n(n + 5) = (5k + 1).(5k+6) = 5k.5k + 5k.6 + 1.5k + 6 = (25k2 + 35k) + 6 không chia hết cho 5

Nếu n = 5k + 2 => n(n + 5) = (5k + 2)(5k + 7) = (25k2 + 35k + 10k) + 14 không chia hết cho 5

Nếu n = 5k + 3 => n(n + 5) = (5k + 3)(5k + 8) = (25k+ 55k) + 24 không chia hết cho 5

Nếu n = 5k + 4 => n(n + 5) = (5k + 4).(5k + 9) = (25k2 + 45k + 20k) + 36 không chia hết cho 5

Vậy với mọi n thì n(n+5) hoặc chia hết cho 25 hoặc không chia hết cho 5

b,c tương tự: