K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2023

1: Ta có: ΔOCD cân tại O

mà OI là đường cao

nên I là trung điểm của CD

Xét tứ giác OCAD có

I là trung điểm chung của OA và CD

=>OCAD là hình bình hành

Hình bình hành OCAD có OC=OD

nên OCAD là hình thoi

2: Ta có: OCAD là hình thoi

=>OA là phân giác của góc COD

Xét ΔOCM và ΔODM có

OC=OD

\(\widehat{COM}=\widehat{DOM}\)

OM chung

Do đó: ΔOCM=ΔODM

=>\(\widehat{OCM}=\widehat{ODM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{ODM}=90^0\)

=>MD là tiếp tuyến của (O)

3:

Xét (O) có

ΔCFE nội tiếp

CE là đường kính

Do đó: ΔCFE vuông tại F

=>CF\(\perp\)FE tại F

=>CF\(\perp\)ME tại F

Xét ΔCME vuông tại C có CF là đường cao

nên \(MF\cdot ME=MC^2\left(1\right)\)

Xét ΔMCO vuông tại C có CI là đường cao

nên \(MI\cdot MO=MC^2\left(2\right)\)

Từ (1) và (2) suy ra \(MF\cdot ME=MI\cdot MO\)

=>\(\dfrac{MF}{MO}=\dfrac{MI}{ME}\)

Xét ΔMFI và ΔMOE có

\(\dfrac{MF}{MO}=\dfrac{MI}{ME}\)

\(\widehat{FMI}\) chung

Do đó: ΔMFI đồng dạng với ΔMOE

10 tháng 12 2023

1:

a: Xét ΔOBA và ΔOCA có

OB=OC

AB=AC

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

=>AC\(\perp\)OC tại C

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó: ΔBCE vuông tại C

=>BC\(\perp\)CE tại C

Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Ta có: OA\(\perp\)BC

CE\(\perp\)CB

Do đó: OA//CE

2: Gọi giao điểm của EC với BA là K

Ta có: BC\(\perp\)CE tại C

=>BC\(\perp\)EK tại C

=>ΔBCK vuông tại C

Ta có: \(\widehat{ACK}+\widehat{ACB}=\widehat{BCK}=90^0\)

\(\widehat{AKC}+\widehat{ABC}=90^0\)(ΔBCK vuông tại C)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ACK}=\widehat{AKC}\)

=>AC=AK

mà AC=AB

nên AK=AB(3)

Ta có: CH\(\perp\)BE

BA\(\perp\)BE

Do đó: CH//BA

Xét ΔEBA có MH//BA

nên \(\dfrac{MH}{BA}=\dfrac{EM}{EA}\left(4\right)\)

Xét ΔEAK có MC//AK

nên \(\dfrac{MC}{AK}=\dfrac{EM}{EA}\left(5\right)\)

Từ (3),(4),(5) suy ra MH=MC

=>M là trung điểm của CH

loading...

Bài 9:

a: Xét tứ giác OPMN có

góc OPM+góc ONM=180 độ

=>OPMN là tứ giác nội tiếp

b: \(MN=\sqrt{10^2-6^2}=8\left(cm\right)\)

c: ΔOAB cân tại O

mà OH là đường trung tuyến

nên OH vuông góc AB

Xét tứ giác OHNM có

góc OHM=goc ONM=90 độ

=>OHNM là tứ giác nội tiép

=>góc MHN=góc MON

2 tháng 3 2023

dạ em cảm ơn, làm giúp em bài 8 luôn được ko ạ

9 tháng 11 2021

1, Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\)

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}\approx90^0-53^0=37^0\)

2, 

a, Áp dụng HTL: \(\left\{{}\begin{matrix}AD\cdot AB=AH^2\\AE\cdot AC=AH^2\end{matrix}\right.\Rightarrow AD\cdot AB=AE\cdot AC\)

b, \(AD\cdot AB=AE\cdot AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\Rightarrow\Delta ABC\sim\Delta AED\left(c.g.c\right)\)

21 tháng 12 2023

 

loading...

1: Xét tứ giác OBDC có \(\widehat{OBD}+\widehat{OCD}=90^0+90^0=180^0\)

nên OBDC là tứ giác nội tiếp

=>O,B,D,C cùng thuộc một đường tròn

Xét (O) có

DB,DC là các tiếp tuyến

Do đó: DB=DC

=>D nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra DO là đường trung trực của BC

=>DO\(\perp\)BC

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB

Ta có: AC\(\perp\)CB

CB\(\perp\)OD

Do đó: AC//OD

2: Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

=>BE\(\perp\)EA tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE là đường cao

nên \(DE\cdot DA=DB^2\left(3\right)\)

Xét ΔDBO vuông tại B có BH là đường cao

nên \(DH\cdot DO=DB^2\left(4\right)\)

Từ (3) và (4) suy ra \(DE\cdot DA=DH\cdot DO\)

 

Xét (I) có

ΔADO nội tiếp

AO là đường kính

=>ΔADO vuông tại D

góc ADC=góc AHC=90 độ

=>AHDC nội tiếp

Xét ΔOHC vuông tại H và ΔODA vuông tại D có

OC=OA

góc HOC chung

=>ΔOHC=ΔODA

=>OH=OD

Xét ΔOAC có OH/OA=OD/OC

nên HD//AC

Xét tứ giác AHDC có

HD//AC

góc HAC=góc DCA

=>AHDC là hình thang cân