Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Vì x=25 thỏa mãn ĐKXĐ nên Thay x=25 vào biểu thức \(A=\dfrac{\sqrt{x}-2}{x+1}\), ta được:
\(A=\dfrac{\sqrt{25}-2}{25+1}=\dfrac{5-2}{25+1}=\dfrac{3}{26}\)
Vậy: Khi x=25 thì \(A=\dfrac{3}{26}\)
2) Ta có: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+1}+\dfrac{2x+8\sqrt{x}-6}{x-\sqrt{x}-2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+2x+8\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3x+3\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-2}\)
a) Phương trình hoành độ giao điểm là:
\(x^2=\left(m+2\right)x-2m\)
\(\Leftrightarrow x^2-\left(m+2\right)x+2m=0\)
\(\Delta=\left(m+2\right)^2-8m=m^2+4m+4-8m=m^2-4m+4=\left(m-2\right)^2\)
Để (d) và (P) cắt nhau tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow\left(m-2\right)^2>0\)
mà \(\left(m-2\right)^2\ge0\)
nên \(m-2\ne0\)
hay \(m\ne2\)
Vậy: Để (d) và (P) cắt nhau tại hai điểm phân biệt thì \(m\ne2\)
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: Xét ΔOMC vuông tại M có MH là đường cao
nên \(HC\cdot HO=HM^2\left(1\right)\)
Xét ΔMAB vuông tại M có MH là đường cao
nên \(HA\cdot HB=HM^2\left(2\right)\)
Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)
c: Xét tứ giác AMBQ có
O là trung điểm của AB và MQ
Do đó: AMBQ là hình bình hành
Hình bình hành AMBQ có AB=MQ
nên AMBQ là hình bình hành
`2x+5y=11(1)`
`2x-3y=0(2)`
Lấy (1) trừ (2)
`=>8y=11`
`<=>y=11/8`
`<=>x=(3y)/2=33/16`
a) Ta có: \(\left\{{}\begin{matrix}2x+5y=11\\2x-3y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=11\\2x-3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{11}{8}\\2x=3y=3\cdot\dfrac{11}{8}=\dfrac{33}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{33}{16}\\y=\dfrac{11}{8}\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}4x+3y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x+3y=6\\4x+2y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-2=4\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=6\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(3;-2)
1.
a)\(A=\sqrt{3}\left(2\sqrt{27}-6\sqrt{\dfrac{1}{3}}+\dfrac{3}{2}\sqrt{12}\right)\)
\(\Leftrightarrow A=\sqrt{3}\left(6\sqrt{3}-2\sqrt{3}+3\sqrt{3}\right)=\sqrt{3}\cdot7\sqrt{3}\)
\(\Leftrightarrow A=21\)
\(B=\dfrac{x+\sqrt{x}}{\sqrt{x}}+\dfrac{x-4}{\sqrt{x}+2}\left(x>0\right)\\ \Leftrightarrow B=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}+2}\\ \Leftrightarrow B=\sqrt{x}+1+\sqrt{x}-2=2\sqrt{x}-1\)
b) Để \(A=B\)
\(\Leftrightarrow2\sqrt{x}-1=21\\ \Leftrightarrow2\sqrt{x}=22\\ \Leftrightarrow\sqrt{x}=11\\ \Leftrightarrow x=121\)
3.
a)\(A=\left(\sqrt{5}-\sqrt{2}\right)^2+\sqrt{40}\)
\(\Leftrightarrow A=7-2\sqrt{10}+2\sqrt{10}\\ \Leftrightarrow A=7\)
\(B=\left(\dfrac{x-\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{x+\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{\sqrt{x}}\left(x>0;x\ne1\right)\\ \Leftrightarrow B=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Leftrightarrow B=\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}\\ \Leftrightarrow B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b) Để \(A=B\)
\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=7\Leftrightarrow\sqrt{x}-1=7\sqrt{x}+7\\ \Leftrightarrow6\sqrt{x}=-8\\ \Leftrightarrow\sqrt{x}=-\dfrac{4}{3}\\ \Leftrightarrow x=\dfrac{16}{9}\)
4.
a)\(A=\left(2\sqrt{75}-5\sqrt{27}-\sqrt{192}+4\sqrt{48}\right):\sqrt{3}\)
\(\Leftrightarrow A=\left(10\sqrt{3}-15\sqrt{3}-8\sqrt{3}+16\sqrt{3}\right):\sqrt{3}\\ \Leftrightarrow A=10-15-8+16=3\)
\(P=\left(\dfrac{\sqrt{x}}{2+\sqrt{x}}+\dfrac{\sqrt{x}}{2-\sqrt{x}}\right):\dfrac{\sqrt{x}}{2+\sqrt{x}}\left(x>0;x\ne4\right)\\ \Leftrightarrow P=\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)+\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\cdot\dfrac{2+\sqrt{x}}{\sqrt{x}}\\ \Leftrightarrow P=\dfrac{2\sqrt{x}-x+2\sqrt{x}+x}{\sqrt{x}\left(2-\sqrt{x}\right)}=\dfrac{4}{2-\sqrt{x}}\)
b) Để \(A=P\)
\(\Leftrightarrow\dfrac{4}{2-\sqrt{x}}=3\\ \Leftrightarrow6-3\sqrt{x}=4\\ \Leftrightarrow3\sqrt{x}=2\\ \Leftrightarrow\sqrt{x}=\dfrac{2}{3}\\ \Leftrightarrow x=\dfrac{4}{9}\)