Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDBC có BH/BD=BF/BC
=>HF//DC
=>EI vuông góc HF(1)
Xét ΔBAC có BE/BA=BF/BC
nên EF//AC
=>EF vuông góc HI(2)
Từ (1), (2) suy ra I là trực tâm của ΔHEF
b: I là trực tâm của ΔHEF
=>FI vuông góc EH
Xét ΔBAD có BE/BA=BH/BD
nên EH//AD
=>FI vuông góc AD
a) ED là đường TB ⇒ED//BC⇒EDBC⇒ED//BC⇒EDBC là hbh
b) Ta có EM là đường TB của ΔABNΔABN
⇒EM//AN⇒EM//KN⇒EM//AN⇒EM//KN
Vì N là trung điểm MC ⇒K⇒K là trung điểm EC
c) C/m tương tự được I là trung điểm BD
Ta có OI=OB2OI=OB2 (O là giao điểm trung tuyến , quên đưa vào hình )
DI=3OB4DI=3OB4
OI=OB4OI=OB4
Chưng minh tương tự được OK=OC4OK=OC4
Vì OIOB=OKOC=14OIOB=OKOC=14
⇒IK//BC⇒IKBC=14⇒IK//BC⇒IKBC=14
1: Xét ΔDCB có
M là trung điểm của BC
H là trung điểm của CD
Do đó: HM là đường trung bình của ΔDCB
Suy ra: HM//DB
1) Xét tam giác DBC có:
H là trung điểm của DC ( HD=HC )
M là trung điểm của BC ( gt )
=> HM là đường trung bình của tam giác DBC
=> HM//BD
2) Xét tam giác ABC có:
EF⊥HM(gt)
Mà HM//BD(cmt)
=> EF⊥BD
=> HE⊥BD
Ta có: BA⊥CA ( H là trực tâm tam giác ABC)
Mà \(E\in AB,D\in HC\)
=> BE⊥HD
Xét tam giác HBD có
BE⊥HD (cmt)
HE⊥BD (cmt)
Mà HE cắt BE tại E
=> E là trực tâm tam giác HBD
a) Ta có E, K lần lượt là trung điểm của BD và CD nên EK là đường trung bình của ΔBCD
⇒EK//BC mà HF⊥BC(gt)
⇒HF⊥EK.
Ta có F, K lần lượt là trung điểm của AC và CD nên FK là đường trung bình của ΔACDΔACD
⇒FK//AD mà EH⊥AD(gt)
⇒EH⊥FK.
Xét tam giác EFK có hai đường cao EH và FH cắt nhau tại H
Do đó H là trực tâm của ΔEFK.
b) Gọi I là trung điểm của AD, ta có IE là đường trung bình của ΔABD
⇒IE//AB//CD (1)
Và IF là đường trung bình của ΔACD⇒IF//DC (2)
Từ (1) và (2) ⇒ IE và IF phải trùng nhau (tiên đề Ơ clit) hay ba điểm I, E, F thẳng hàng.
Hay EF//DC mà KH⊥EF (H là trực tâm ΔEFK)⇒KH⊥DC.
Vì vậy xét ΔDHC có đường trung tuyến HK đồng thời là đường cao nên ΔDHC cân tại H.