Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác vuông ABO và ACO có chung cạnh huyền AO nên A, B, O, C cùng thuộc đường tròn đường kính AO.
Vậy tứ giác ABOC là tứ giác nội tiếp.
b) Ta thấy ngay \(\Delta ABD\sim\Delta AEB\left(g-g\right)\)
\(\Rightarrow\frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AE.AD=AB^2\)
Xét tam giác vuông ABO có BH là đường cao nên áp dụng hệ thức lượng ta có:
\(AH.AO=AB^2\)
Suy ra AD.AE = AH.AO
c) Ta có \(\widehat{PIK}+\widehat{IKQ}+\widehat{P}+\widehat{Q}=360^o\)
\(\Rightarrow2\left(\widehat{PIO}+\widehat{P}+\widehat{OKQ}\right)=360^o\)
\(\Rightarrow\widehat{PIO}+\widehat{P}+\widehat{OKQ}=180^o\)
Mặt khác \(\widehat{PIO}+\widehat{P}+\widehat{IOP}=180^o\)
\(\Rightarrow\widehat{IOP}=\widehat{OKQ}\Rightarrow\Delta PIO\sim\Delta QOK\)
\(\Rightarrow\frac{IP}{PO}=\frac{OQ}{KQ}\Rightarrow PI.KQ=PO^2\)
Sử dụng bất đẳng thức Cô-si ta có:
\(IP+KQ\ge2\sqrt{IP.KQ}=2\sqrt{OP^2}=PQ\)
acje cho hỏi 2 tam giác đồng dạng ở câu b là góc nào í chỉ ro rõ cho e với ạk
Lời giải:
a) Vì $AB, AC$ là tiếp tuyến nên $OB\perp AB, OC\perp AC$
$\Rightarrow \widehat{ABO}=\widehat{ACO}=90^0$
$\Rightarrow \widehat{ABO}+\widehat{ACO}=180^0$ nên tứ giác $ABOC$ nội tiếp.
b) Xét tam giác $ABD$ và $AEB$ có:
$\widehat{A}$ chung
$\widehat{ABD}=\widehat{AEB}$ (tính chất góc tạo bởi tiếp tuyến và dây cung thì bằng góc nt chắn cung đó)
$\Rightarrow \triangle ABD\sim \triangle AEB$ (g.g)
$\Rightarrow \frac{AB}{AE}=\frac{AD}{AB}\Rightarrow AB^2=AE.AD$
c)
Vì $DE\parallel CM$ nên $DC=EM$
Ta có:
$\widehat{BHA}=\frac{1}{2}(\text{sđc(BD)+sđc(EM)})$
$\widehat{BOA}=\frac{1}{2}\widehat{BOC}=\frac{1}{2}(\text{sđc(BD)+sđc(CD)})$
Mà $DC=EM$ nên $\widehat{BHA}=\widehat{BOA}$
$\Rightarrow BHOA$ là tứ giác nội tiếp
$\Rightarrow \widehat{BHO}=\widehat{ABO}=90^0$
$\Rightarrow HO\perp DE$
$\Rightarrow H$ là trung điểm $DE$ hay $HD=HE$
Ta có đpcm.
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)