Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Có : \(\widehat{AMO}+\widehat{ANO}=90^o+90^o=180^o\)
\(\Rightarrow AMON\) nt.
2) Có: AM,AN là tiếp tuyến của (O)
\(\Rightarrow MN\perp AO\)
Có: \(\widehat{BMN}=90^o\)
\(\Rightarrow BM\perp AO\)
\(\Rightarrow\)BM//AO.
3) Có : \(\widehat{OMI}=\widehat{ONI}=\widehat{IAN}\)(cùng phụ \(\widehat{INA}\))
\(\Rightarrow\Delta_vOMI\sim\Delta_vNAI\left(gn\right)\)
\(\Rightarrow\frac{MO}{OI}=\frac{AN}{NI}\)
\(\Rightarrow MO.NI=AN.IO\)
4) \(l_{\stackrel\frown{MN}}=\frac{\pi R.120}{180}=\frac{2}{3}\pi R\)(đvđd)
\(S_{hinhquatMON}=\frac{\pi R^2.120}{360}=\frac{1}{3}\pi R^2\)(ddvdt)
b> do BM và AO cùng vuông góc vs MN nên song song
c> chịu,,,,hỏi j
Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng là 24m và bằng 5/8 Chiều dài . Tính diện tích mảnh đất đó ? giúp mình giải bài này Thanks cả nhà.
Cho sửa lại đề tí ==* , câu b) là c/m MR // AO => MC // AO :>
O N C A M H
a. Ta có: AM = AN (tính chất hai tiếp tuyến cắt nhau)
Suy ra tam giác AMN cân tại A
Mặt khác AO là đường phân giác của góc MAN ( tính chất hai tiếp tuyến cắt nhau )
Suy ra AO là đường cao của tam giác AMN ( tính chất tam giác cân )
Vậy \(OA\perp MN\)
b. Tam giác MNC nội tiếp trong đường tròn (O) có NC là đường kính nên góc (CMN) = 90o
Suy ra: \(NM\perp MC\)
Mà \(OA\perp MN\)(chứng minh trên)
Suy ra: OA // MC
c. Ta có: \(AN\perp NC\) (tính chất tiếp tuyến)
Áp dụng định lí Pitago vào tam giác vuông AON ta có :
AO2 = AN2 + ON2
Suy ra : AN2 = AO2 – ON2 = 52 – 32 = 16
AN = 4 (cm)
Suy ra: AM = AN = 4 (cm)
Gọi H là giao điểm của AO và MN
Ta có: \(MH=NH=\frac{MN}{2}\) (tính chất tam giác cân)
Tam giác AON vuông tại N có \(NH\perp AO\). Theo hệ thức lượng trong tam giác vuông, ta có:
OA . NH = AN . ON => \(NH=\frac{\left(AN.ON\right)}{AO}=\frac{\left(4.3\right)}{5}=2,4\)
MN = 2.NH = 2.2,4 = 4,8 (cm)
Vậy .....................
ý a dễ
b/ Ta có IM=IN (đề bài) => OI vuông góc AN => ^AIO=90
Ta lại có ^ABO=^ACO=90 (AB,AC là tiếp tuyến)
=> B,I,C đều nhìn AO dưới 1 góc 90 độ => B,I,C cùng nằm trên 1 đường tròn đường kính AO => B,I,C,O cùng nằm trên 1 đường tròn
c/
Ta có AB=AC => số đo cung AB thuộc đường tròn đk AO = số đo cung AC thuộc đường tròn đk AO (1)
số đo ^AIB=1/2 số đo cung AB (góc nội tiếp) (2)
số đo ^AIC=1/2 sso đo cung AC (góc nội tiếp) (3)
Từ (1) (2) và (3) => ^AIB=^AIC => AI là phân giác của góc BIC
@Bakura : Câu a với b mình chứng minh được rồi bạn, mình cần câu c. Bạn biết làm câu c thì giúp mình với ạ, cảm ơn bạn.