Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. có góc B cộng góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp
2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.
3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn
a: góc ABO+góc ACO=90+90=180 độ
=>ABOC nội tiếp đường tròn đường kính OA
Tâm là trung điểm của OA
Bán kính là OA/2
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>AO vuông góc BC
c: Xét ΔAMB và ΔABN có
góc AMB=góc ABN
góc MAB chung
=>ΔAMB đồng dạng với ΔABN
=>AM/AB=AB/AN
=>AB^2=AM*AN=AH*AO
a) Nhận thấy \(\widehat{OBA}=\widehat{OCA}=90^o\) nên tứ giác ABOC nội tiếp đường tròn đường kính OA.
b) Nhân thấy \(\widehat{OID}=\widehat{OBD}=90^o\) nên tứ giác OIBD nội tiếp đường tròn đường kính OD \(\Rightarrow\widehat{IDO}=\widehat{IBO}\)
Lại có \(\widehat{IBO}=\widehat{CBO}=\widehat{BCO}\) nên dễ dàng suy ra đpcm.
c) Dễ chứng minh tứ giác OCFI nội tiếp \(\Rightarrow\widehat{OCB}=\widehat{OCI}=\widehat{OFI}=\widehat{OFD}\)
Theo câu b, ta có \(\widehat{FDO}=\widehat{IDO}=\widehat{BCO}\) nên dẫn đến \(\widehat{OFD}=\widehat{FDO}\). Do đó tam giác ODF cân tại O. (đpcm)
d) Tam giác ODF cân tại F có đường cao OI nên I là trung điểm DF.
Mặt khác, có I là trung điểm BE nên tứ giác BDEF là hình bình hành.
\(\Rightarrow\) EF//BD hay EF//AB.
Lại có E là trung điểm BC nên F là trung điểm AC (đpcm)
Lời giải 1 bài toán tương tự - Dài và khó
Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube