K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

a.  Ta có: \(\Lambda\)ABO=90 ( do AB là tiếp tuyến của (O))
                \(\Lambda\)ACO=90 ( do AC là tiếp tuyến của (O))
     \(\Rightarrow\) \(\Lambda\)ABO + \(\Lambda\)ACO = 90 + 90 = 180.

     Suy ra: tứ giác ABOC nội tiếp.

b.  Ta có: AB,AC lần lượt là tiếp tuyến của (O) nên AB=AC.

     \(\Rightarrow\)\(\Delta\)ABC cân tại A lại có AH là tia phân giác nên AH cũng là đường cao

     \(\Rightarrow\)AO\(\perp\)BC tại H.

     Áp dụng đinh lý Py-ta-go vào \(\Delta\)ABO ta có:

         AO2 = AB2 + BO2 = 42 + 32 = 25

     \(\Rightarrow\)AO = 5 (cm).

     Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ABO ta được:

         AB2 = AH.AO \(\Rightarrow\) AH = \(\dfrac{AB^2}{AO}\)=\(\dfrac{16}{5}\)(cm)

c.  Ta có: \(\Lambda\)ACE=\(\Lambda\)ADC ( tính chất của góc tạo bởi tia tiếp tuyến và dây cung )

     Xét \(\Delta\)ACE và \(\Delta\)ADC có:

     \(\Lambda ACE=\Lambda ADC\) 

     \(\Lambda\)CAD chung

     Do đó: \(\Delta ACE\sim\Delta ADC\) \(\Rightarrow\dfrac{AC}{AD}=\dfrac{AE}{AC}\) \(\Rightarrow\)AC2 = AD.AE (1)

     Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ACO có:

                    AC2 = AH.AO (2)

    Từ (1) và (2) ,suy ra: AD.AE = AH.AO.

    

9 tháng 5 2021

a)Ta có:\(\widehat{ABO};\widehat{ACO}\) lần lượt là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ABO=}\widehat{ACO}=90^{ }\)

\(\Rightarrow\widehat{ABO}+\widehat{ACO}=90+90=180\)

Mà hai góc này đối nhau nên tứ giác ABOC nội tiếb)

b)Theo a) ta có:\(\widehat{ABO}=90\)⇒▲ABO là tam giác vuông tại B đường cao AH.

Áp dụng định lí pytago vào tam giác vuông ABO đường cao AH ta có:

\(AO^2=AB^2+BO^2=4^2+3^2=25\)

\(\Rightarrow\sqrt{AO}=5\) cm.

Áp dụng hệ thức lượng giữa cạnh và đường cao trong ▲vuông ABO ta có:

\(AB^2=AH\cdot AO\)

\(\Rightarrow AH=\dfrac{AB^2^{ }}{AO}=\dfrac{4^2^{ }}{5}=\dfrac{16}{5}\)

8 tháng 3 2022

a, Vì AM; AN lần lượt là tiếp tuyến đường tròn (O) với M;N là tiếp điểm 

=> ^AMO = ^ANO = 900

mà AM = AN (tc tiếp tuyến cắt nhau) ; OM = ON = R 

Vậy OA là đường trung trực đoạn MN => OA vuông MN 

Xét tứ giác AMON có 

^AMO + ^ANO = 1800

mà 2 góc này đối Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM có 

^A _ chung ; ^AMB = ^ACB ( cùng chắn cung BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g)

\(\dfrac{AM}{AC}=\dfrac{AB}{AM}\Rightarrow AM^2=AB.AC\)

c, Xét tam giác OMA vuông tại M, đường cao MH 

Ta có \(AM^2=AH.AO\)( hệ thức lượng ) 

=> \(AB.AC=AH.AO\Rightarrow\dfrac{AB}{AO}=\dfrac{AH}{AC}\)

Xét tam giác ABH và tam giác AOC có 

^A _ chung 

\(\dfrac{AB}{AO}=\dfrac{AH}{AC}\left(cmt\right)\)

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( góc ngoài đỉnh B )

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

d, Ta có BHOC nt 1 đường tròn (cmc) 

=> ^OHC = ^OBC (góc nt chắc cung CO) 

=> ^AHB = ^ACO (góc ngoài đỉnh H) 

mà ^OCB = ^OBC do OB = OC = R nên tam giác OBC cân tại O

=> ^OHC = ^AHB 

mà ^CHN = 900 - ^OHC 

^NHB = 900 - ^AHB 

=> ^CHN = ^NHB 

=> HN là phân giác của ^BHC 

26 tháng 3 2022

a, Ta có AM ; AN lần lượt là tiếp tuyến (O) 

=> ^AMO = ^ANO = 900

Xét tứ giác AMON có ^AMO + ^ANO = 1800 

mà 2 góc này đối 

Vậy tứ giác AMON là tứ giác nt 1 đường tròn 

b, Xét tam giác AMB và tam giác ACM ta có 

^A _ chung ; ^AMB = ^ACM ( cùng chắn BM ) 

Vậy tam giác AMB ~ tam giác ACM (g.g) 

c, Ta có AM = AN ( tc tiếp tuyến cắt nhau ) 

ON = OM = R => OA là đường trung trực đoạn MN 

Xét tam giác AMO vuông tại M, đường cao MH 

=> AM^2 = AH.AO 

=> AB . AC = AH . AO => AB/AO = AH/AC 

Xét tam giác ABH và tam giác AOC có

^A _ chung ; AB/AO = AH/AC (cmt) 

Vậy tam giác ABH ~ tam giác AOC (c.g.c) 

=> ^ABH = ^AOC ( mà ^ABH là góc ngoài đỉnh B ) 

Vậy tứ giác BHOC là tứ giác nt 1 đường tròn 

 

13 tháng 6 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [A, N] Đoạn thẳng j: Đoạn thẳng [A, M] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [M, O] Đoạn thẳng m: Đoạn thẳng [N, O] Đoạn thẳng n: Đoạn thẳng [N, H] Đoạn thẳng p: Đoạn thẳng [M, H] Đoạn thẳng q: Đoạn thẳng [O, H] Đoạn thẳng r: Đoạn thẳng [N, M] Đoạn thẳng t: Đoạn thẳng [E, B] Đoạn thẳng a: Đoạn thẳng [E, H] Đoạn thẳng b: Đoạn thẳng [C, M] O = (-1.94, 4.32) O = (-1.94, 4.32) O = (-1.94, 4.32) A = (5.34, 4.66) A = (5.34, 4.66) A = (5.34, 4.66) Điểm N: Giao điểm của c, f Điểm N: Giao điểm của c, f Điểm N: Giao điểm của c, f Điểm M: Giao điểm của c, g Điểm M: Giao điểm của c, g Điểm M: Giao điểm của c, g Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm B: Giao điểm của c, h Điểm B: Giao điểm của c, h Điểm B: Giao điểm của c, h Điểm H: Trung điểm của C, B Điểm H: Trung điểm của C, B Điểm H: Trung điểm của C, B Điểm E: Giao điểm của s, r Điểm E: Giao điểm của s, r Điểm E: Giao điểm của s, r

a. Dễ thấy AMON nội tiếp vì \(\widehat{AMO}=\widehat{ANO}=90^o\)

b. Do H là trung điểm BC nên \(OH⊥HA\), vậy H, M, A, N, O cùng thuộc đường tròn đường kính AO.

Ta có \(\widehat{NHA}=\widehat{NMA}=\widehat{MNA}=\widehat{MHA}\) (Góc nội tiếp cùng chắn cung và AM = AN)

Vậy HA là phân giác góc MHN.

c. Xét đường tròn ngoại tiếp tứ giác HMAN có: \(\widehat{HNM}=\widehat{HAM}\) (Góc nội tiếp cùng chắn cung HM)

Mà \(\widehat{HAM}=\widehat{HBE}\)(Đồng vị)

Vậy nên \(\widehat{HNE}=\widehat{HBE}\) hay HNBE nội tiếp.

Suy ra \(\widehat{ENB}=\widehat{EHB}\) (Cùng chắn cung EB)

Mà \(\widehat{ENB}=\widehat{MCB}\) (Cùng chắn  cung MB) nên  \(\widehat{EHB}=\widehat{MCB}\)

Chúng lại ở vị trí đồng vị nên HE // CM.

23 tháng 9 2017

ai giúp với

Giải thích các bước giải:

a/ Chứng minh: OA vuông góc MN.

Áp dụng tính chất 2 tiếp tuyến cắt nhau ta có AM=ANAAM=AN⇒A thuộc trung trực của MN.

Lại có OM=ON=ROOM=ON=R⇒O thuộc trung trực của MN

OA⇒OA là trung trực của MN.

OAMN⇒OA⊥MN (1).

b/ Vẽ đường kính NOC. Chứng minh rằng: MC//AO.

Xét tam giác MNC có: MO=OC=ON=RMC=12NCMO=OC=ON=R⇒MC=12NC

ΔMNC⇒ΔMNC vuông tại M (Định lí đường trung tuyến)

MNMC⇒MN⊥MC (2).

Từ (1) và (2) => MC // AO.

c/ Tính độ dài các cạnh của tam giác AMN biết OM = 3 cm, OA = 5 cm.

Áp dụng định lí Pytago trong tam giác vuông OAM có:

AM2=OA2OM2AM2=5232=16AM=4(cm)=ANAM2=OA2−OM2AM2=52−32=16AM=4(cm)=AN

Gọi H là giao điểm của MN và OA.

MNAO⇒MN⊥AO tại H.

Áp dụng hệ thức lượng trong tam giác vuông OAM, đường cao MH có:

OM2=OH.OA32=OH.5OH=95(cm)AH=OAOH=165OM2=OH.OA⇒32=OH.5⇒OH=95(cm)⇒AH=OA−OH=165

MH2=OH.AH=95.165MH=125(cm)⇒MH2=OH.AH=95.165⇒MH=125(cm)

OA là trung trực của MN (cmt) H⇒H là trung điểm của MN

MN=2MH=245(cm)⇒MN=2MH=245(cm).

image
 
22 tháng 8 2021

a) Tam giác MAN cân tại A có OA là tia phân giác nên nó cũng trùng với đường cao. Vì vậy OAMN.
b) Do AM, AN là hai tiếp tuyến cùng xuất phát từ một điểm nằm ngoài đường tròn nên AO là phân giác góc ^MAN và I là điểm chính giữa của cung MN. Từ đó ta có:

.

 IM là phân giác góc ^NMA.

 I là tâm đường tròn nội tiếp tam giác MNA.
c) Nếu tứ giác OMIN là hình thoi thì OM=ON=MI=IN=R.
Suy ra các tam giác OMI, ONI là tam giác đều. Vì vậy ^MON=^MOA+^AON=60o+60o=120o.
Suy ra ^MAN=180o^MON=60o.
Ngược lại giả sử ^MAN=60o. Suy ra ^MON=180o^MAN=120o.
Có OA là tia phân giác của góc MON nên ^MOA=^AON=120o:2=60o.
Suy ra các tam giác MOA, AON là tam giác đều hay tứ giác OMIN là hình thoi.

Vậy ^MAN=60o thì tứ giác OMIN là hình thoi.