Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Diện tích tam giác ABC là
S = ½. AC. BC.sinC = ½.a.b.sinC
Vì a; b không đổi và sinC ≤ 1 nên suy ra S ≤ ab/2
Dấu xảy ra khi và chỉ khi sinC = 1 hay
Vậy giá trị lớn nhất của diện tích tam giác ABC là ab/2.
a) Áp dụng công thức: \(S = \frac{1}{2}bc\sin A\), ta có:
\(S = \frac{1}{2}.14.35.\sin {60^o} = \frac{1}{2}.14.35.\frac{{\sqrt 3 }}{2} \approx 212,2\)
Áp dụng đl cosin, ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)
\(\begin{array}{l}
\Rightarrow {a^2} = {14^2} + {35^2} - 2.14.35.\cos {60^o} = 931\\
\Rightarrow a \approx 30,5
\end{array}\)
\( \Rightarrow R = \frac{a}{{2\sin A}} = \frac{{30,5}}{{2\sin {{60}^o}}} \approx 17,6\)
b) Ta có: \(p = \frac{1}{2}.(4 + 5 + 3) = 6\)
Áp dụng công thức Heron, ta có:
\(S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {6(6 - 4)(6 - 5)(6 - 3)} = 6.\)
Lại có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{4.5.3}}{{4.6}} = 2,5.\)
Gọi tam giác vuông đó là ΔABC vuông tại A có \(\widehat{B}=\dfrac{\widehat{A}+\widehat{C}}{2}\)
Theo đề, ta có: cạnh lớn nhất của tam giác đó bằng a
=>BC=a
ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)(1)
\(\widehat{B}=\dfrac{1}{2}\cdot\left(\widehat{A}+\widehat{C}\right)\)
=>\(\widehat{B}=\dfrac{1}{2}\left(90^0+\widehat{C}\right)\)
=>\(\widehat{B}-\dfrac{1}{2}\cdot\widehat{C}=45^0\)(2)
Từ (1),(2) suy ra \(\left\{{}\begin{matrix}\widehat{B}-\dfrac{1}{2}\cdot\widehat{C}=45^0\\\widehat{B}+\widehat{C}=90^0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{3}{2}\cdot\widehat{C}=-45^0\\\widehat{B}+\widehat{C}=90^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{C}=30^0\\\widehat{B}=90^0-30^0=60^0\end{matrix}\right.\)
Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{a}=sin30=\dfrac{1}{2}\)
=>\(AB=\dfrac{1}{2}a\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+\dfrac{1}{4}a^2=a^2\)
=>\(AC^2=\dfrac{3}{4}a^2\)
=>\(AC=\dfrac{a\sqrt{3}}{2}\)
ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{a}{2}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{a^2\sqrt{3}}{8}\)
Gọi tam giác thỏa đề là \( ABC\) ( với \(A>B>C\) )
đề cho tam giác vuông nên suy ra \(A=90^o\)
ta có \(A+B+C=180^o\) , mà theo đề \(A+C=2B\) , suy ra \(B=60^o\)
ta tính \(\text{AB = BC}.cos60^o=\dfrac{a}{2}\)
diện tích tam giác : \(S=\dfrac{1}{2}AB.BC.sinB=\dfrac{a^2\sqrt{3}}{8}\)
Đáp án A
- A: B có hoành độ là hoành độ của 2 đỉnh của 2 bán trục lớn của (E) , chúng nằm trên đường thẳng y+ 2= 0. Điểm C có hoành độ và tung độ dương thì C nằm trên cung phần tư thứ nhất
- Tam giác ABC có AB= 6 cố định. Vì thế tam giác có diện tích lớn nhất khi khoảng cách từ C đến AB lớn nhất.
- Dễ nhận thấy C trùng với đỉnh của bán trục lớn (0; 3).
a) A là tập con củ B vì:
\( - \sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( { - \sqrt 3 } \right)^2} - 3 = 0\), nên \( - \sqrt 3 \in B\)
\(\sqrt 3 \in \mathbb{R}\) thỏa mãn \({\left( {\sqrt 3 } \right)^2} - 3 = 0\), nên \(\sqrt 3 \in B\)
Lại có: \({x^2} - 3 = 0 \Leftrightarrow x = \pm \sqrt 3 \) nên \(B = \{ - \sqrt 3 ;\sqrt 3 \} \).
Vậy A = B.
b) C là tập hợp con của D vì: Mỗi tam giác đều đều là một tam giác cân.
\(C \ne D\) vì có nhiều tam giác cân không là tam giác đều, chẳng hạn: tam giác vuông cân.
c) E là tập con của F vì \(24\; \vdots \;12\) nên các ước nguyên dương của 12 đều là ước nguyên dương của 24.
\(E \ne F\) vì \(24 \in F\)nhưng \(24 \notin E\)
Diện tích tam giác : S = 1/2.ab.sinC.
Mà ta có 0 < sin C < 1 nên 0 < S ≤ 1/2.ab
Vậy Max S = 1/2.ab
Dấu “=” xảy ra khi sin C = 1 ⇔ C = 90º.
Vậy trong các tam giác có hai cạnh a và b, tam giác vuông có diện tích lớn nhất bằng 1/2.ab