Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{AC}=\left(1;3\right)\Rightarrow AC=\sqrt{1^2+3^2}=\sqrt{10}\)
Đường tròn tâm A đi qua C có bán kính \(R=AC=\sqrt{10}\)
Phương trình:
\(\left(x+2\right)^2+\left(y-1\right)^2=10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{AB}=\left(2;2\right)=2\left(1;1\right)\)
\(\Rightarrow\) Đường thẳng AB nhận \(\overrightarrow{u}=\left(1;1\right)\) là 1 vtcp
Phương trình AB đi qua \(A\left(-2;1\right)\) và có vtcp (1;1) là:
\(\left\{{}\begin{matrix}x=-2+t\\y=1+t\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC
Phương trình tổng quát của AB là: 3(x - 1) + 2(y - 2) = 0 ⇔ 3x + 2y - 7 = 0
Kẻ CH ⊥ AB, (H ∈ AB)
Diện tích tam giác ABC là:
b) Viết phương trình đường tròn đường kính AB
Gọi I là trung điểm của AB
Đường tròn đường kính AB là đường tròn tâm I bán kính IA:
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}} = (4;3)\)
PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}} = (4;3)\) làm VTPT là:
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}} = 5\)
\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)
c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:
\({(x + 1)^2} + {(y - 3)^2} = 1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: vecto BC=(2;-5)
=>VTPT là (5;2)
Phương trình (d) là:
5(x+1)+2(y-2)=0
=>5x+5+2y-4=0
=>5x+2y+1=0
b: Gọi (C): x^2+y^2-2ax-2by+c=0
Theo đề, ta có:
\(\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+1^2-2a-2b+c=0\\9+16-6a+8b+c=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-4b+c=-1-4=-5\\-2a-2b+c=-2\\-6a+8b+c=-25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{8}\\b=-\dfrac{13}{4}\\c=-\dfrac{53}{4}\end{matrix}\right.\)
=>(C): x^2+y^2+19/4x+13/2y-53/4=0
=>x^2+2*x*19/8+361/64+y^2+2*y*13/4+169/16=1885/64
=>(x+19/8)^2+(y+13/4)^2=1885/64
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{BA}=\left(2;4\right)\Rightarrow AB=\sqrt{2^2+4^2}=2\sqrt{5}\)
Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}M\left(-1;0\right)\\AM=\dfrac{AB}{2}=\sqrt{5}\end{matrix}\right.\)
Đường tròn đường kính AB có tâm M và bán kính \(R=AM\) nên có pt:
\(\left(x+1\right)^2+y^2=5\)
\(\overrightarrow{BC}=\left(1;8\right)\Rightarrow BC=\sqrt{1^2+8^2}=\sqrt{65}\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{5}{2};1\right)\)
Đường tròn đường kính BC nhận M là tâm và có bán kính \(R=\dfrac{BC}{2}=\dfrac{\sqrt{65}}{2}\)
Phương trình:
\(\left(x-\dfrac{5}{2}\right)^2+\left(y-1\right)^2=\dfrac{65}{4}\)