Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{AC}=\left(1;3\right)\Rightarrow AC=\sqrt{1^2+3^2}=\sqrt{10}\)
Đường tròn tâm A đi qua C có bán kính \(R=AC=\sqrt{10}\)
Phương trình:
\(\left(x+2\right)^2+\left(y-1\right)^2=10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\overrightarrow{BC}=\left(1;8\right)\Rightarrow BC=\sqrt{1^2+8^2}=\sqrt{65}\)
Gọi M là trung điểm BC \(\Rightarrow M\left(\dfrac{5}{2};1\right)\)
Đường tròn đường kính BC nhận M là tâm và có bán kính \(R=\dfrac{BC}{2}=\dfrac{\sqrt{65}}{2}\)
Phương trình:
\(\left(x-\dfrac{5}{2}\right)^2+\left(y-1\right)^2=\dfrac{65}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC
Phương trình tổng quát của AB là: 3(x - 1) + 2(y - 2) = 0 ⇔ 3x + 2y - 7 = 0
Kẻ CH ⊥ AB, (H ∈ AB)
Diện tích tam giác ABC là:
b) Viết phương trình đường tròn đường kính AB
Gọi I là trung điểm của AB
Đường tròn đường kính AB là đường tròn tâm I bán kính IA:
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Tọa độ trọng tâm là:
x=(1+2+0)/3=1 và y=(3+1+3)/3=7/3
c: \(d\left(A;d\right)=\dfrac{\left|1\cdot1+3\cdot\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{\sqrt{2}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
uBC(6;0)=>nAH(0,6) ( vì AH vuông góc với BC)
PTTQ của đg thẳng AH đi qua A là
\(0\left(x-3\right)+6\left(y-0\right)=0< =>6y=0\)
b)\(d\left(C;AH\right)=R=\dfrac{\left|6.1\right|}{\sqrt[]{0^2+6^2}}=1\)
PT đg tròn tầm C tiếp xúc AH là
\(\left(x-4\right)^2+\left(y-1\right)^2=1^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi phương trình đường thẳng AB có dạng là \(y=ax+b\)
Ta có \(A\left(5;-2\right)\) và \(B\left(0;3\right)\) thuộc đt AB nên ta có hpt :
\(-2=5a+b\)
\(3=b\)
Ta tính được \(a=-1,b=3\)
Vậy phương trình đường thẳng AB có dạng \(y=-x+3\)
\(\overrightarrow{AB}=\left(2;2\right)=2\left(1;1\right)\)
\(\Rightarrow\) Đường thẳng AB nhận \(\overrightarrow{u}=\left(1;1\right)\) là 1 vtcp
Phương trình AB đi qua \(A\left(-2;1\right)\) và có vtcp (1;1) là:
\(\left\{{}\begin{matrix}x=-2+t\\y=1+t\end{matrix}\right.\)