K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: vecto BC=(2;-5)

=>VTPT là (5;2)

Phương trình (d) là:

5(x+1)+2(y-2)=0

=>5x+5+2y-4=0

=>5x+2y+1=0

b: Gọi (C): x^2+y^2-2ax-2by+c=0

Theo đề, ta có:

\(\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+1^2-2a-2b+c=0\\9+16-6a+8b+c=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a-4b+c=-1-4=-5\\-2a-2b+c=-2\\-6a+8b+c=-25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{8}\\b=-\dfrac{13}{4}\\c=-\dfrac{53}{4}\end{matrix}\right.\)

=>(C): x^2+y^2+19/4x+13/2y-53/4=0

=>x^2+2*x*19/8+361/64+y^2+2*y*13/4+169/16=1885/64

=>(x+19/8)^2+(y+13/4)^2=1885/64

a: vecto AB=(2;-1)

PTTS AB là:

x=1+2t và y=2-t

vecto AB=(2;-1)

=>VTPT là (1;2)

PTTQ của AB là:

1(x-1)+2(y-2)=0

=>x-1+2y-4=0

=>x+2y-5=0

c:PT đường cao CH là:

2(x-5)+(-1)(y-4)=0

=>2x-10-y+4=0

=>2x-y-6=0

Tọa độ hình chiếu của C trên AB là:

2x-y-6=0 và x+2y-5=0

=>C(17/5;4/5)

e: PT (C) có dạng là:

x^2+y^2-2ax-2by+c=0

Theo đề, ta có:

1+4-2a-4b+c=0 và 9+1-6a-2b+c=0 và 25+16-10a-8b+c=0

=>a=23/8; b=13/4; c=55/4

=>(C): x^2+y^2-23/4x-13/2x+55/4=0

=>x^2-2*x*23/8+529/64+y^2-2*x*13/4+169/16=325/64

=>(x-23/8)^2+(y-13/4)^2=325/64

11 tháng 9 2019

Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.

A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2

⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1

4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3

⇔ a = − 5 2 b = 9 2

Chọn B.

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Lời giải:

Gọi \(B(a,b)\)\(C(c,d)\)

Ta có \(\overrightarrow {HA}=(0,4)\perp \overrightarrow{BC}=(c-a,d-b)\Rightarrow 4(d-b)=0\rightarrow b=d\)

Thay \(d=b\):

\(\overrightarrow{HB}=(a-1,b-2)\perp \overrightarrow{AC}=(c-1,b-6)\)

\(\Rightarrow (a-1)(c-1)+(b-2)(b-6)=0\)

Lại có \(IA^2=IB^2=IC^2\leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(c-2\right)^2+\left(b-3\right)^2=10\end{matrix}\right.\)

\(\Rightarrow (a-2)^2=(c-2)^2\rightarrow a+c=4\) ( \(a\neq c\) )

Ta thu được

\(\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(3-a\right)\left(a-1\right)+\left(b-2\right)\left(b-6\right)=0\end{matrix}\right.\)

\(\left\{\begin{matrix} a^2+b^2-4a-6b+3=0\\ -a^2+4a+b^2-8b+9=0\end{matrix}\right.\Rightarrow 2b^2-14b+12=0\rightarrow b=1\)

hoặc \(b=6\)

Thay vào PT suy ra \(\left[{}\begin{matrix}-a^2+4a+2=0\\-a^2+4a-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2+\sqrt{6}\\a=1;a=3\end{matrix}\right.\)

Vậy.....

22 tháng 3 2017

cj em nói cj này giỏi thiệt còn em k bit j

19 tháng 5 2017

\(\left(x,y\right)\) là tâm đường tròn ngoại tiếp tam giác ABC

\(\Leftrightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=\left(x-2\right)^2+y^2\\\left(x+1\right)^2+\left(y-2\right)^2=\left(x+3\right)^2+\left(y-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x-4y=-1\\4x+2y=-5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{11}{14}\\y=-\dfrac{13}{14}\end{matrix}\right.\)

Vậy \(I\left(-\dfrac{11}{14};-\dfrac{13}{14}\right)\)

7 tháng 4 2016

B A D D C H K M I

Ta có \(HK\perp BC,K\in BC;\overrightarrow{HK}=\left(0;-2\right)\Rightarrow y-1=0\)

Gọi M là trung điểm của BC ta có phương trình \(x+3=0;M=IM\cap BC\Rightarrow M\left(-3;1\right)\)

Gọi D là điểm đối xứng của A qua I chỉ ra BHCD là hình bình hành. Khi đó M là trung điểm của HD, suy ra D(-5;-1).

I là trung điểm của AD, suy ra A(-1;7)

\(AI=\sqrt{20}\), phương trình đường tròn ngoại tiếp tam giác ABC là : \(\left(x+3\right)^2+\left(y-3\right)^2=20\)

Tọa độ điểm B, C là nghiệm của hệ phương trình :

\(\begin{cases}y-1=0\\\left(x+3\right)^2+\left(y-3\right)^2=20\end{cases}\)\(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\) hoặc \(\begin{cases}x=-7\\y=1\end{cases}\)

Vậy ta có \(B\left(1;1\right),C\left(-7;1\right)\) hoặc \(B\left(-7;1\right),C\left(1;1\right)\)

Suy ra \(A\left(-1;7\right);B\left(1;1\right),C\left(-7;1\right)\)

   hoặc\(A\left(-1;7\right);B\left(-7;1\right),C\left(1;1\right)\)

17 tháng 7 2018

Gọi I(x, y). Ta có  A I → = x + 4 ; y − 1 B I → = x − 2 ; y − 4 C I → = x − 2 ; y + 2 .

Do I là tâm đường tròn ngoại tiếp tam giác ABC nên:

  I A = I B = I C ⇔ I A 2 = I B 2 I B 2 = I C 2

⇔ x + 4 2 + y − 1 2 = x − 2 2 + y − 4 2 x − 2 2 + y − 4 2 = x − 2 2 + y + 2 2 ⇔ x + 4 2 = x − 2 2 + 9 y = 1 ⇔ x = − 1 4 y = 1 .

Chọn B.