Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=2 thì (d): \(y=2\cdot x+2^2+4=2x+8\)

Phương trình hoành độ giao điểm là:

\(x^2=2x+8\)

=>\(x^2-2x-8=0\)

=>(x-4)(x+2)=0

=>\(\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

Khi x=4 thì \(y=4^2=16\)

Khi x=-2 thì \(y=\left(-2\right)^2=4\)

Vậy: (d) cắt (P) tại A(4;16); B(-2;4)

b: Phương trình hoành độ giao điểm là:

\(x^2=mx+m^2+4\)

=>\(x^2-mx-m^2-4=0\)

\(a\cdot c=1\cdot\left(-m^2-4\right)=-m^2-4< =-4< 0\forall m\)

=>(P) luôn cắt (d) tại hai điểm phân biệt nằm ở hai phía của trục tung

A nằm bên trái trục tung nên x1<0

B nằm bên phải trục tung nên x2>0

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\\x_1x_2=\dfrac{c}{a}=-m^2-4\end{matrix}\right.\)

\(\left|x_1\right|-\left|x_2\right|=3\)

=>\(\left(\left|x_1\right|-\left|x_2\right|\right)^2=3^2=9\)

=>\(x_1^2+x_2^2-2\left|x_1x_2\right|=9\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=9\)

=>\(m^2-2\left(-m^2-4\right)-2\left|-m^2-4\right|=9\)
=>\(m^2+2\left(m^2+4\right)-2\left(m^2+4\right)=9\)

=>\(m^2=9\)

=>\(\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\)

Bài toán: Cho ba số x,y,zx,y,z thỏa mãn x+y+z=0x+y+z=0 và x2+y2+z2=a2x2+y2+z2=a2....
Đọc tiếp

Bài toán: Cho ba số x,y,z" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">x,y,z thỏa mãn x+y+z=0" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">x+y+z=0 và x2+y2+z2=a2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">x2+y2+z2=a2. Tính x4+y4+z4" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">x4+y4+z4 theo a" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:18.18px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">a.

 

 
1
27 tháng 7 2016

vì a+b+c=0==> x=-(y+z) ==> \(x^2=\left(y+z\right)^2\)

<=> \(x^2=y^2+2yz+z^2\)

<=> \(x^2-y^2-z^2=2yz\)

<=> \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)

<=>\(x^4+y^4+z^4=2x^2y^2+2y^2z^2+2z^2x^2\)

<=> \(2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=a^4\)

==> \(x^4+y^4+z^4=\frac{a^4}{2}\)

18 tháng 8 2016

bạn viết lại đề bài theo công thức nha, chả hiểu đề bài viết gì mà làm.