Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Vecto tịnh tiến là:
$\overrightarrow{AA'}=(x_{A'}-x_A, y_{A'}-y_A)=(2-3, 3-2)=(-1,1)$
$B'$ là ảnh của $B$ qua phép tịnh tiến theo vecto $overrightarrow{AA'}$ nên:
$\overrightarrow{BB'}=\overrightarrow{AA'}$
$\Leftrightarrow (x_{B'}-x_B, y_{B'}-y_B)=(-1,1)$
\(\Leftrightarrow \left\{\begin{matrix} x_{B'}=x_B-1=2-1=1\\ y_{B'}=y_B+1=5+1=6\end{matrix}\right.\)
Vậy tọa độ điểm $B'$ là $(1,6)$
Bài 4:
Đường tròn $(C)$ có tâm $I(1;2)$
Đường tròn $(C')$ có tâm $I'(0;3)$
$R=R'=2$
Vecto tịnh tiến biến đường tròn $(C)$ thành $(C')$ là:
$\overrightarrow{v}=\overrightarrow{II'}=(-1,1)$
a) Gọi M' (x₁' ; y₁' ), N' (x₂' ; y₂ )
* M' là ảnh của M qua phép F, nên toạ độ M' thoả:
{x₁' = x₁.cosα – y₁.sinα + a
{y₁' = x₁.sinα + y₁.cosα + b
* N' là ảnh của N qua phép F, nên toạ độ N' thoả:
{x₂' = x₂.cosα – y₂.sinα + a
{y₂' = x₂.sinα + y₂.cosα + b
b) * Khoảng cách d giữa M và N là:
d = MN = √ [(x₂ - x₁)² + (y₂ - y₁)²]
* Khoảng cách d' giữa M' và N' là:
d' = M'N' = √ [(x₂' - x₁' )² + (y₂' - y₁' )²]
= √ {[x₂.cosα – y₂.sinα + a - (x₁.cosα – y₁.sinα + a)]² + [x₂.sinα + y₂.cosα + b - (x₁.sinα + y₁.cosα + b)]²}
= √ {[cosα(x₂ - x₁) - sinα(y₂ - y₁)]² + [sinα(x₂ - x₁) + cosα(y₂ - y₁)]²}
= √ [(x₂ - x₁)².(cos²α + sin²α) + (y₂ - y₁)².(cos²α + sin²α)]
= √ [(x₂ - x₁)² + (y₂ - y₁)²]
c) Phép F là phép dời hình vì: MN = M'N' = √ [(x₂ - x₁)² + (y₂ - y₁)²]
d) Khi α = 0 ⇒ cosα = 1, sinα = 0
Suy ra:
{x' = x + a
{y' = y + b
Đây là biểu thức toạ độ của phép tịnh tiến. Vậy F là phép tịnh tiến
Trong mặt phẳng với hệ trục Oxy, ảnh của điểm M(x;y) qua phép tịnh tiến vectơ là:
A. M' (a - x; b - y)
B. M' (x + b; y + a)
C. M' (-x + a; y + b)
D. M' (x + a; y + b)
Giải thích;
\(M'\left(x';y'\right)=T_{\overrightarrow{v}}\left(M\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x'-x=a\\y'-y=b\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\)
\(\Rightarrow M'\left(x+a;y+b\right)\)
Chọn D.
Đường thẳng d thành đường thẳng d’ có phương trình được xác định bằng cách: Mỗi điểm M(x;y) ∈ d' là ảnh của 1 điểm M0(x0;y0) thuộc d qua phép tịnh tiến theo vecto u=(2;3), ta có:
\(\left\{{}\begin{matrix}M_0\left(x_0;y_0\right)\in d\\\overrightarrow{M_0M}=\overrightarrow{u}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0-2y_0+2=0\\x_0 =x-2\\y_0=y-3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)-2\left(y-3\right)+2=0\Leftrightarrow x-2y+6=0\)
Đây là phương trình của d'
* M' là ảnh của M qua phép F, nên toạ độ M' thoả:
{x₁ = x₁.cosα – y₁.sinα + a
{y₁ = x₁.sinα + y₁.cosα + b
* N' là ảnh của N qua phép F, nên toạ độ N' thoả:
{x2 = x₂.cosα – y₂.sinα + a
{y₂ = x₂.sinα + y₂.cosα + b
* Khoảng cách d' giữa M' và N' là:
d' = M'N' = √ [(x₂ - x₁ )² + (y₂ - y₁ )²]
= √ {[x₂.cosα – y₂.sinα + a - (x₁.cosα – y₁.sinα + a)]² + [x₂.sinα + y₂.cosα + b - (x₁.sinα + y₁.cosα + b)]²}
= √ {[cosα(x₂ - x₁) - sinα(y₂ - y₁)]² + [sinα(x₂ - x₁) + cosα(y₂ - y₁)]²}
= √ [(x₂ - x₁)².(cos²α + sin²α) + (y₂ - y₁)².(cos²α + sin²α)]
= √ [(x₂ - x₁)² + (y₂ - y₁)²]
bài toán hình học lớp 11!!!!!!!!!!!!!!!!!!!!!!!!!!!!? | Yahoo Hỏi & Đáp