Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\) là 2 điểm bất kì
\(A'\left(x_1';x_2'\right)\) và \(B'\left(x_2';y_2'\right)\) lần lượt là ảnh của A và B qua phép biến hình F
Trong đó: \(\left\{{}\begin{matrix}x_1'=x_1cos\alpha-y_1sin\alpha+a\\y_1'=x_1sin\alpha+y_1cos\alpha+b\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_2'=x_2cos\alpha-y_2sin\alpha+a\\y'_2=x_2sin\alpha+y_2cos\alpha+b\end{matrix}\right.\)
Ta có: \(AB=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\)
\(A'B'=\sqrt{\left(x_2cos\alpha-y_2sin\alpha-x_1cos\alpha+y_1sin\alpha\right)^2+\left(x_2sin\alpha+y_2cos\alpha-x_1sin\alpha-y_1cos\alpha\right)^2}\)
\(=\sqrt{\left[\left(x_2-x_1\right)cos\alpha+\left(y_1-y_2\right)sin\alpha\right]^2+\left[\left(x_2-x_1\right)sin\alpha-\left(y_1-y_2\right)cos\alpha\right]^2}\)
\(=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}=AB\)
\(\Rightarrow\) F là phép dời hình
b.
F là phép tịnh tiến khi \(\alpha=0\)
Thật vậy, khi \(\alpha=0\) ta có: \(\left\{{}\begin{matrix}x'=x+a\\y'=y+b\end{matrix}\right.\)
Đây là biểu thức của phép tịnh tiến theo vecto \(\overrightarrow{v}=\left(a;b\right)\)
phép dời hình là phép biến điểm thành điểm tia thành tia đoạn thẳng thành đoạn thẳng bằng nó, đừong tròn thành đường tròn cùng bán kính...........(trong sgk định nghĩa ý)
phép dời hình koh làm thay đổi khoảng cách của 2 điểm bất kì
dễ dàng thấy khoảng cách OM và OM' trong phép biến F1 là bằng nhau
con trong phép 2 thì khác nhau nó làm thay đổi khoảng cách nên không là phép biến hình còn nếu muốn tổng quát thì chon điểm n(x1;y1) bất kì rùi so sánh khoảng cách NM và NM'
a) M(-1;1) đối xứng qua trục Oy ta được N(-1;1).
Gọi M'(x;y) là ảnh của N(-1;1) qua phép tịnh tiến theo vectơ v → = ( 2 ; 0 )
b) Gọi P(x;y) là ảnh của M(1;1) qua phép tịnh tiến theo v → = ( 2 ; 0 )
P(3;1) đối xứng qua trục Oy ta được M"(-3;1)
* M' là ảnh của M qua phép F, nên toạ độ M' thoả:
{x₁ = x₁.cosα – y₁.sinα + a
{y₁ = x₁.sinα + y₁.cosα + b
* N' là ảnh của N qua phép F, nên toạ độ N' thoả:
{x2 = x₂.cosα – y₂.sinα + a
{y₂ = x₂.sinα + y₂.cosα + b
* Khoảng cách d' giữa M' và N' là:
d' = M'N' = √ [(x₂ - x₁ )² + (y₂ - y₁ )²]
= √ {[x₂.cosα – y₂.sinα + a - (x₁.cosα – y₁.sinα + a)]² + [x₂.sinα + y₂.cosα + b - (x₁.sinα + y₁.cosα + b)]²}
= √ {[cosα(x₂ - x₁) - sinα(y₂ - y₁)]² + [sinα(x₂ - x₁) + cosα(y₂ - y₁)]²}
= √ [(x₂ - x₁)².(cos²α + sin²α) + (y₂ - y₁)².(cos²α + sin²α)]
= √ [(x₂ - x₁)² + (y₂ - y₁)²]
Đáp án D
Phát biểuđúng: a , c, e, f, g, i, j, l
b. Phép biến hình biến đường tròn thành đường tròn có bán kính bằng nó có thể là phép tịnh tiến
d. Phép tịnh tiến biến đường tròn thành đường tròn có cùng bán kính
h. Với bất kì 2 điểm A, B và ảnh A’, B’ của chúng qua 1 phép dời hình, ta luôn có AB = A’B’.
k. Nếu phép dời hình biến điểm A thành điểm B thì nó cũng biến điểm B thành A (phát biểu không đúng với phép tịnh tiến)
Lấy điểm N ( x 1 ; y 1 ) , thì điểm N ′ ( 2 x 1 − 1 ; − 2 y 1 + 3 ) = F ( N ) . Ta có
Từ đó suy ra với hai điểm M, N tùy ý và M', N' lần lượt là ảnh của chúng qua F ta có M′N′ = 2MN. Vậy F là phép đồng dạng với tỉ số đồng dạng là 2.
a) Gọi M' (x₁' ; y₁' ), N' (x₂' ; y₂ )
* M' là ảnh của M qua phép F, nên toạ độ M' thoả:
{x₁' = x₁.cosα – y₁.sinα + a
{y₁' = x₁.sinα + y₁.cosα + b
* N' là ảnh của N qua phép F, nên toạ độ N' thoả:
{x₂' = x₂.cosα – y₂.sinα + a
{y₂' = x₂.sinα + y₂.cosα + b
b) * Khoảng cách d giữa M và N là:
d = MN = √ [(x₂ - x₁)² + (y₂ - y₁)²]
* Khoảng cách d' giữa M' và N' là:
d' = M'N' = √ [(x₂' - x₁' )² + (y₂' - y₁' )²]
= √ {[x₂.cosα – y₂.sinα + a - (x₁.cosα – y₁.sinα + a)]² + [x₂.sinα + y₂.cosα + b - (x₁.sinα + y₁.cosα + b)]²}
= √ {[cosα(x₂ - x₁) - sinα(y₂ - y₁)]² + [sinα(x₂ - x₁) + cosα(y₂ - y₁)]²}
= √ [(x₂ - x₁)².(cos²α + sin²α) + (y₂ - y₁)².(cos²α + sin²α)]
= √ [(x₂ - x₁)² + (y₂ - y₁)²]
c) Phép F là phép dời hình vì: MN = M'N' = √ [(x₂ - x₁)² + (y₂ - y₁)²]
d) Khi α = 0 ⇒ cosα = 1, sinα = 0
Suy ra:
{x' = x + a
{y' = y + b
Đây là biểu thức toạ độ của phép tịnh tiến. Vậy F là phép tịnh tiến