K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2022

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow d'\) nhận (3;1) là 1 vtpt

Phương trình d':

\(3\left(x-1\right)+1\left(y+8\right)=0\Leftrightarrow3x+y+5=0\)

Gọi A là giao điểm d và d' \(\Rightarrow\) tọa độ A là nghiệm:

\(\left\{{}\begin{matrix}3x+y+5=0\\x-3y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(-2;1\right)\)

M' đối xứng M qua d khi và chỉ khi A và trung điểm MM'

\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_A-x_M=-5\\y_{M'}=2y_A-y_M=10\end{matrix}\right.\) \(\Rightarrow M\left(-5;10\right)\)

NV
17 tháng 6 2020

I là trung điểm của MM' khi và chỉ khi I là hình chiếu vuông góc của M lên d

Gọi d' là đường thẳng qua M và vuông góc d \(\Rightarrow\) d' nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình d':

\(1\left(x-3\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-5=0\)

I là giao điểm d và d' nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}2x-y=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow I\left(1;2\right)\Rightarrow b^2=4\)

NV
25 tháng 4 2020

Gọi M là giao điểm d và \(\Delta\) , tọa độ M là nghiệm:

\(\left\{{}\begin{matrix}2x-3y+1=0\\x+y-2=0\end{matrix}\right.\) \(\Rightarrow M\left(1;1\right)\)

\(\Delta'\) đối xứng \(\Delta\) qua d \(\Leftrightarrow\) d là phân giác góc tạo bởi \(\Delta\)\(\Delta'\)

Gọi \(A\left(2;0\right)\) là điểm thuộc d

Phương trình \(\Delta'\) qua M có dạng:

\(a\left(x-1\right)+b\left(y-1\right)=0\Leftrightarrow ax+by-a-b=0\)

Áp dụng công thức k/c và tính chất phân giác:

\(d\left(A;\Delta'\right)=d\left(A;\Delta\right)\Leftrightarrow\frac{\left|2a-a-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|2.2-3.0+1\right|}{\sqrt{2^2+3^2}}\)

\(\Leftrightarrow\sqrt{13}\left|a-b\right|=5\sqrt{a^2+b^2}\)

\(\Leftrightarrow13\left(a-b\right)^2=25\left(a^2+b^2\right)\)

\(\Leftrightarrow6a^2+13ab+6b^2=0\Rightarrow\left[{}\begin{matrix}3a=-2b\\2a=-3b\end{matrix}\right.\)

Chọn \(a=2\Rightarrow b=-3\) ; \(a=3\Rightarrow b=-2\)

Có hai đường thẳng \(\Delta'\) thỏa mãn: \(\left[{}\begin{matrix}2x-3y+1=0\\3x-2y-1=0\end{matrix}\right.\)

25 tháng 4 2020

Giúp mình với mình đang cần giải gấp trong hôm nay

12 tháng 11 2018

Do điểm M’ đối xứng với điểm M qua điểm P nên P là trung điểm MM’.

Suy ra:

x P = x M + ​ x M ' 2 y P = y M + ​ y M ' 2 ⇔ x M ' = 2 x P − x M = 2.9 − 0 = 18 y M ' = 2 y P − y M = 2. ( − 3 ) − 4 = − 10 ⇒ M ' ( 18 ; − 10 )

Đáp án B

a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+1=0

=>c=-1

=>x-4y-1=0

b: Vì (d) vuông góc x-4y+5=0

nên (d): 4x+y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+4=0

=>c=-4

=>4x+y-4=0

8 tháng 4 2016

\(d\left(A\left(P\right)\right)=\frac{\left|2\left(-2\right)-2.1+1.5-1\right|}{\sqrt{2^2+\left(-2\right)^2+1^2}}=\frac{2}{3}\)

(P) có vectơ pháp tuyến là \(\overrightarrow{n_p}=\left(2;-2;1\right);\)

d có vectơ pháp tuyến là \(\overrightarrow{u_d}=\left(2;3;1\right);\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(-5;0;10\right)\)

Theo giả thiết suy ra (Q) nhận \(\overrightarrow{n}=-\frac{1}{5}\left[\overrightarrow{n_p},\overrightarrow{u_d}\right]=\left(1;0;-2\right)\) làm vectơ pháp tuyến 

Suy ra \(\left(Q\right):x-2z+12=0\)

 

d: 4x-3y+5=0

=>VTPT là (4;-3) và (d) đi qua A(1;3)

=>VTCP là (3;4)

PTTS là:

x=1+3t và y=3+4t

=>N(3t+1;4t+3)

NM=1

=>\(\sqrt{\left(3t+1+1\right)^2+\left(4t+3-2\right)^2}=1\)

=>9t^2+12t+4+16t^2+8t+1=1

=>25t^2+20t+4=0

=>(5t+2)^2=0

=>t=-2/5

=>N(-1/5;-3/5)