K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2021

Vì ABCD là hình bình hành nên ˆA=ˆCA^=C^ và ˆB=ˆDB^=D^ (tính chất)

Áp dụng định lý tổng các góc trong một tứ giác ta có:

16 tháng 11 2021

Góc A = C = 1200 
Góc B = D = 600

16 tháng 11 2021

Vì ABCD là hbh nên AD//BC \(\Rightarrow\widehat{A}+\widehat{B}=180^0\Rightarrow3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\Rightarrow\widehat{A}=120^0\)

Vì ABCD là hbh nên \(\left\{{}\begin{matrix}\widehat{B}=\widehat{D}=60^0\\\widehat{A}=\widehat{C}=120^0\end{matrix}\right.\)

a: \(\widehat{C}=\widehat{A}=110^0\)

\(\widehat{B}=\widehat{D}=180^0-110^0=70^0\)

b: Sửa đề: Cm tứ giác AECF là hình bình hành

Xét tứ giác AECF có

AE//CF

AE=CF

Do đó: AECF là hình bình hành

c: Ta có: ABCD là hình bình hành

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường

=>O là trung điểm của AC

Ta có: AECF là hình bình hành

nên Hai đường chéo AC và EF cắt nhau tại trung điểm của mỗi đường

=>O là trung điểm của FE

11 tháng 7 2017

hình tự vẽ

Gọi giao điểm của AC và BD là O => O là trung điểm của AC, BD => AO=OC;BO=OD

từ điểm O hạ OO' vuông góc với xy tại O' => OO'//DD' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{DD'y}=90^o\))

AO=OC;OO'//DD' => OC là đường trung bình của tứ giác BB'DD' => \(OC=\frac{1}{2}\left(BB'+DD'\right)\)(1)

Mặt khác: BO=OD; OO'//AA' (2 góc đồng vị bằng nhau \(\widehat{OO'y}=\widehat{AA'y}=90^o\))

=>OC là đường trung bình của tam giác AA'C => \(OC=\frac{1}{2}AA'\)(2)

Từ (1) và (2) => \(\frac{1}{2}AA'=\frac{1}{2}\left(BB'+DD'\right)\Leftrightarrow AA'=BB'+DD'\)(đpcm)

11 tháng 7 2017

ý lộn, đường trung bình của hình thang BB'DD' nhé chứ ai lại nói tứ giác bao giờ 

6 tháng 11 2016

Đây :) 

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A