K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\widehat{E}=53^0\)

6 tháng 11 2021

Áp dụng tslg trong tam giác DEF vuông tại D:

\(tanE=\dfrac{DF}{ED}=\dfrac{4}{3}\Rightarrow\widehat{E}\approx53^0\)

Ta có:

\(A=\dfrac{\sqrt{x}-x}{\sqrt{x}-1}=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)

Vậy \(A=-\sqrt{x}\)

6 tháng 11 2021

\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=-\sqrt{x}\)

6 tháng 11 2021

B

CHọn B

28 tháng 9 2021

a) \(\sqrt{x-5}=3\)

\(x-5=9\)

\(x=14\)

b) Vì \(\sqrt{x-10}\) ≥0

⇒không có x thỏa mãn

c) \(\sqrt{2x-1}=\sqrt{7}\)

\(2x-1=7\)

\(2x=8\)

\(x=4\)

28 tháng 9 2021

Bài 3

a) \(\sqrt{x-5}=3\)

\(\Rightarrow x-5=9\)

\(\Rightarrow x=14\)

b) \(\sqrt{x-10}=-21\)

\(\Rightarrow x\in\varnothing\)

c) \(\sqrt{2x-1}=\sqrt{7}\)

\(\Rightarrow2x-1=7\)

\(\Rightarrow2x=8\)

\(\Rightarrow x=4\)

 

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

20 tháng 10 2021

Nhờ mn giúp em với ạ, mn xem em làm bài đúng ko ạ?

20 tháng 10 2021

Câu 12.

   \(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)

\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)

\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)

\(=8\sqrt{a}\)

 

 

30 tháng 9 2021

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

30 tháng 9 2021

\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)